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THE APPLICATION OF LIGHT SCATTERING
AND SMALL-ANGLE X-RAY SCATTERING
'TO INTERACTING BIOLOGICAL SYSTEMS

ABSTRACT

. Light scattering and small-angle X-ray scattering are very powerful tools for the

study of interactions of biological macromolecules in solution, since both are capable
of yielding information on the thermodynamics and the geometry of intramolecular
interactions.
A brief review of fluctuation theory as applied to the two techniques is presented.
It is shown that in two- and three-component systems identical information on the
thermodynamic interactions of the macromolecular solute is obtainable from the two
techniques. This is illustrated by examples. Typical patterns of interaction in two-
component systems are shown for the cases of an isoionic protein in deionized water,
a highly charged protein in deionized water, and a protein undergoing reversible aggre-
gation. The three-component cases illustrated are: interaction of the macromolecule
with a small solute molecule, preferential hydration of the macromolecules and
formation of specific complexes between two proteins.

Although the geometric information obtainable from the two methods is identical,
difference in the degree of resolution makes the two techniques complementary. This is
demonstrated by an analysis of the structure of high molecular weight ribonucleic
acid by the two scattering techniques, light scattering giving the overall geometry of
the molecule, while X-ray scattering yields details of the internal structure; the two
sets of data are shown to be mutually consistent. In another example, it is shown how
the geometric information obtained by small-angle X-ray scattering on the aggregation
of B-lactoglobulin can be used to verify conclusions drawn from a thermodynamic
light scattering study.

INTRODUCTION

In the present-day development of molecular biology, interactions between
various macromolecules with specific functions are assuming an ever more
prominent role. In the mechanisms proposed for protein biosynthesis, various
nucleic acid-enzyme-amino acid complexes seem to occupy a key position,
enzyme action often involves protein—protein interactions, while the structure
of the living cell itself depends very strongly on a complicated network of
intermolecular interactions. As a particularly important example, one might
cite the case of hemoglobin whose structure, consisting of four molecular
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units joined together by non-covalent bonds, leads to a system thermody-
namically capable of transmitting oxygen absorbed from the atmosphere to
various parts of the organism.

The detailed understanding of the functioning of these various systems
requires accurate knowledge of thermodynamic and geometric aspects of the
interactions involved. This information is often obtained from in vitro
studies of the isolated systems in a medium resembling their native environ-
ment, narely in an aqueous solution which contains a moderate amount of
salt (I'/2 ~ 0.15).

While a great variety of techniques are available for the study of
interactions between biological macromolecules, two methods based upon
the scattering of electromagnetic radiation are particularly suited, since
they are capable of yielding at once the thermodynamic and the geometric
information desired. These are the techniques of light scattering and small-
angle X-ray scattering. It is the purpose of this paper to demonstrate by ex-
amples how these two techniques can be applied to biological systems in
various states of interaction. No attempt will be made at a comprehensive
review of the literature on the subject and the examples used will be those
with which the author is best acquainted. X

The basic theory of scattering has been treated in a number of publications
(see, for example, Debye, 1947; Oster, 1948; Tanford, 1961; Kirkwood and
. Goldberg, 1950; Stockmayer, 1950; Brinkman and Hermans, 1949; Geidus-
chek and Holtzer, 1958; Timasheff and Kronman, 1958 ; Timasheff and Cole-
man, 1960; Guinier and Fournet, 1955; Van de Hulst, 1957; and Fliigge,
1957), and will not be presented here in detail.

While the theories of light scattering and small-angle X-ray scattering are
essentially identical and the two techniques yield in principle the same infor-
mation, the two methods are actually complementary. This is due to the
difference in the wave lengths of the radiation used (3000-5000 A in light
scattering, 1-5 A in small-angle X-ray scattering). As a result, light scattering
is most useful for the study of the geometry of larger molecules (>1000 A),
while X-ray scattering permits the examination of much smaller molecules
(20-1000 A). For thermodynamic studies, the two methods are interchange-
able, with light scattering being preferable in the low concentration range
(~0.01-30 g/1), and small-angle X-ray scattering being most useful at high
concentrations of the macromolecules (~ 10-500 g/L).

THERMODY NAMICS OF SCATTERING

When a particle is subjected to an electric field of strength, E, a dipole, p,
is induced in it, whose magnitude is given by
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where « is the polarizability. The oscillating dipole radiates energy in all
directions with an intensity, i;, which, for the case of » particles, small
relative to the wavelength of the radiation, is equal to

. 8 4 .2

% (1 4 cos? 0) )

I, i'r?

where I, is the intensity of the incident beam, A’ is its wavelength in the
medium, r is the distance of the observer from the scattering medium and
0 is the angle between the scattered and the incident beams. This is the basic
equation of light scattering.

In the case of free electrons, the polarizability can be expressed as

_e2

= 3 @

where e is the electronic charge, v is the frequency of the incident radiation
and m is the mass of the electron. Properly combining equations (2) and (3),
the scattering due to an electron, I, is found to be

I et

“=_———(1+cos?0 N

I, 2r2m2c4( + ) @
where ¢ is the velocity of light. This is the well-known Thomson equation,
which forms the basis of small-angle X-ray scattering. The scattering from a
particle, which represents the sum of the scattering from its electrons, is
given by:

iy = I.N,*P(6) (%)

where N, is the number of electrons in the particle, and P(6) is a parameter
describing the angular distribution of the scattering; it is a function of the
geometry of the particle.

When particles (or molecules) are placed in solution, it can be shown that
the excess scattering observed over that of the pure solvent is due to fluctua-
tions in the composition within a volume element 6¥. The appropriate equa-
tions are:

Ai n26V 0e\2 ———2
. . . _s AN had P 2
Light scattering T, = 2007 ( 3 C) T’pAC (O)(1 + cos®* 0)  (6a)
. ; A v
X-ray scattering: Aig=1I=—=] O6VAC*P(0) (6b)
oC/r,p

where ¢ is the dielectric constant of the solution, C is the concentration in
g/ml, p is the density of the solution, expressed in electrons per unit volume.
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AC? is the time average of the square of the concentration fluctuations,
AC?, and is related to the chemical potential of the solvent, y,, by

i = —kTC,

Opo
o V(ac ) T.p
where k is Boltzmann’s constant, 7T is the thermodynamic temperature and
V, is the partial molar volume of the solvent.
Combination of equation (7) with equations (6) leads to the following
expression for scattering in a two-component system (solvent: component 0;
solute: component 2):

Kf(i';)z G 1 [1 + & aLZ‘] - K,,(a_p)z G
ac?] Ai(0) M, RT aC, aC,) Ai(0)

(light scattering) (X-ray scattering) ®)
42 = RT log C; + p,° + 1, (T, p)

where K, and K" are constants, R is the gas constant, M, is the molecular
weight of the solute, 7 is the refractive index of the solution, Ai(0) is the excess
scattering intensity over that of pure solvent, extrapolated to zero angle*,
and p,¢ is the excess chemical potential of the solute, equal to RT log y,,
where y, is the activity coefficient of component 2.

The fluctuation theory can be extended also to systems of several com-
ponents. For a three-component system (solvent : component 0, macro-
molecule : component 2, third component, such as supporting electrolyte :
component 1), the scattering is described (using the notation of Kirkwood
and Goldberg (1950)) by:

Q)

on \? 7%
K’( " ) —C—2 (light scattering) = K"(ﬂﬂ) & (X-ray scattering)

oC,] Ai(0) aC,] Ai(0)
l 1 A22 A12 AIZ
= — |22l \ic
a+o) (M, |m, , |5 2
C—1+A11
—2ad,, @A, \? 1 0y
-5 o) 5 A= wrae ©9)

v
—+ 4 -1 J
Cl + 11 Cl +A11

a = (0n/dC,)c,[(0n[dC,),, (light scattering)

& = @p/3C,)c, (0pI0C,)e, = 2L L= POTMOD (o cattering)

0,(1— Povz/Qz)

* The excess scattering of light is often expressed as the Rayleigh ratio, Ry = i(6)r2/
Io(1 + cos? 8), or the turbidity, = = (167/3)/R,. i(0) is the scattering increment at angle 6.
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When Xv, is the number of particles into which component 1 dissociates, Q;
is the number of electrons in a molecule of component i divided by its mass
in grams, p; is the density in electrons per cm® and V; is the partial specific
volume of unhydrated component i, in cm® per electron.

This brief outline of the fluctuation theory makes it evident that the
equations of light scattering and small-angle X-ray scattering are essentially
identical, the refractive increment in light scattering being replaced by the
density increment in X-ray scattering. Thus, the two methods are capable of
yielding identical thermodynamic information. Closer examination of
equations (8) and (9) shows that, while in a two-component system the
molecular weight of the solute is obtained directly by extrapolation to zero
concentration and all interactions are expressed by the concentration depen-
dent term, in a three-component system, extrapolation yields the product of
the molecular weight with a compositional parameter o and a parameter
describing thermodynamic interactions between components 2 and 1. This
fact may be used to advantage in investigating the interactions of two solutes.
We will show now by a few examples how equations 8 and 9 can be used to
characterize various types of interactions.

Two-Component Systems

First we shall summarize briefly the effect of various interactions of com-
ponent 2 with itself on the shape of the scattering curve. While equation (8)
describes exactly the scattering in a two-component system, for a polyelec-
trolyte, such as a protein, the coefficient of the concentration dependent term
may itself have a complicated concentration dependence and result in various
complex shapes of the curve. Three distinct cases may be described:

1. Isoionic protein in ion-free water. The principal interactions are those
due to proton fluctuations and to progressive ionization of the protein (Kirk-
wood and Timasheff, 1956). The concentration dependent term of equation
(8) assumes the form:

C, ou,, C, nNe4<Zzz->,240 7 3
it B ot M B Nl S RO R V'3 )
RT3C, ~ M, \ ~ kTye@ £ xa)2 T 5 ¢
Z,? 1 ’
4L — 428"\ (10)
az
B i =
3303[H+] dpH
4N (2D Cy
ekT M,

where (Z,2) 4, is the mean square charge of the protein in protonic units, e,
¢ is the dielectric constant of the medium, k is Boltzmann’s constant, x and
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a are the Debye-Hiickel parameters, N is Avogadro’s number, Z, is the
average charge of the protein, [H*] is the hydrogen ion concentration, K,
is the water dissociation constant, and m, is the molar concentration of
component 2. The first term in concentration which represents the contri-
bution of charge fluctuations on the protein molecule, in the limit, is linear in
the square root of protein concentration; the second term is the excluded
volume and is linear in the first power of protein concentration; the third
term, which reflects the ionization of protein with dilution, is a function which
passes through a maximum at very low values of protein concentration;
2B’ reflects the combined effect of all other types of intermolecular force.
The typical concentration dependence curve is shown as curve 1 of Fig. 1.

2

PROTEIN CONCENTRATION

Fic. 1. Two component scattering curves. 1. Isoionic protein in ion-free water;
2. Highly charged protein in ion-free water; 3. Associating protein. (Both coordi-
nates are in arbitrary units.)

‘The net result of these interactions is an attraction between solute molecules;
jts magnitude may be determined by scattering measurements, using equation
(10) (Timasheff, Dintzis, Kirkwood and Coleman, 1957).

2. Protein systems with high charge in ion-free water. In this case, strong
electrostatic forces result in ordering of solute molecules in the solution. This
leads to intermolecular interference of the scattering, and can be treated as an
interference phenomenon (Fournet, 1951; Doty and Steiner, 1952). A typical
curve obtained is drawn in Fig. 1 (curve 2). This particular case will not be
descrited in detail here and the reader is referred to the cited literature.

3. Macromolecule undergoing a reversible aggregatioh (nP zI-{_* P,). While
such systems are normally examined in the presence of supporting electrolyte,
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in most cases they can be treated as pseudo two-component systems. Here,
the coefficient of the concentration dependent term may be decomposed into
the product of two contributing effects, one representing the association, the
other accounting for other thermodynamic interactions:

1 aﬂz(e) _ 0 log ylz 5 logfz

RT oC, oG, oC,
dlog | _Kin-DECI LMo
aC, M"Y, + Kn’f,"C ! G M, .
(1 —f)M," !
K=~ 72772
nfznczn—l

where M, is the monomer molecular weight, M, is the weight average mole-
cular weight at concentration C,, f; is the fraction of component 2 not aggre-
gated and 7', is its activity coefficient. Curve 3 of Fig. 1 represents typical
experimental results obtained in this case. This particular curve was taken
from a study of the tetramerization of f-lactoglobulin A, in which both
scattering techniques were used giving essentially overlapping results (Town-
end and Timasheff, 1960; Timasheff, Witz and Luzzati, in preparation).

Three-component Systems

"In a three-component system, the situation becomes somewhat more
complicated, since both the concentration dependent term and the extrapolated
term are now functions of interactions between components 1 and 2. This
makes it possible, however, to measure the degree of interaction between
these two components. Three examples will be treated: (1) Interaction
between a macromolecular component 2 and small component 1, i.e. binding
of 1 to 2; (2) Preferential binding of component 0 to component 2, i.e., the
degree of hydration; (3) Complex formation between two proteins, P and S,

according to the reaction P + nS é PS,, where P is component 2 and S
component 1.

Case 1: Binding of small molecules. The factor D of equation (9) can be
expressed as:

- S\ 2

M, +(aM1 v) (12)

where 7 is the average number of particles of component 1 bound to a mole-
cule of component 2.

Using binding data form the literature (Scatchard, Coleman and Shen,
1957; Kay and Edsall, 1956; Katz, 1952), values of D have been calculated
for serum albumin (BSA) in the presence of NaCl, NaSCN and urea, and of
sodium DNA’ate in the presence of HgCl, . Results of the calculations for
light scattering and small-angle X-ray scattering are summarized in Table 1.
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In every case, the apparent molecular weight turns out to be somewhat higher
than the true value of M, . Binding of NaCl and NaSCN to BSA, however,
result in an effect smaller than the usual experimental error in both X-ray
scattering and light scattering. This permits treatment of these systems as
pseudo two-component ones. The opposite is true for BSA-urea and NaDNA-
HgCl,, where the effect of binding results in apparent molecular weights up
to 2.5 times larger than the true value of M, . This is reflected also in a signi-
ficant effect on the slopes of the concentration dependent curves. Deviations
of such magnitude from M, can be used to advantage to determine the extent
of preferential binding of component 1 to component 2 (Ewart, Roe, Debye
and McCartney, 1946).

Case 2: Preferential binding of solvent. The contribution of binding to the
factor D represents in reality preferential binding and ¥ can be positive or
negative, depending on whether there is an excess of component 1 or com-
ponent 0 in the vicinity of molecules of 2. This is due to the fact that the
free energy of binding, AF®, is the difference between the free energies of
interaction of 2 with 1 and of 2 with 0:

AF® = AF'? — AF®? 13)
But:
opy® _ 0%AF1? 9*AF°? (14)
om, 0m/0m, 0m.0m,
and

M, o —10° 7
=7 TF2 T T sy, + 4
A1z = 3 RT 50, ~ Myzv, my ot T ANC) (15)

Thus, if AF°? is larger than AF'2, AF® is positive, 4,, is positive and ¥ is
negative, indicating a deficiency of component 1 in the immediate vicinity of

molecules 2, or, in other words, hydration of component 2. This leads to the
intercept of equation (9) being higher than 1/M, .

Now,
d
;=2vl(ﬂ) ,
om, 3!

(5_'"_0) Mo (aﬂ) (16)

omy/ ., my \om,/ ,,

giving the number of moles of solvent bound per mole of macromolecule.
Using these equations the reported small-angle X-ray scattering on DNA

in the presence of NaCl and NaBr (Luzzati, Nicolaieff and Masson, 1961)

has been examined with the aim of establishing the excess of water present

in the neighborhood of the DNA molecules, i.. its degree of hydration.
At the level of resolution of small-angle X-ray scattering, DNA is found to

and
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have the shape of infinitely long rods (see Fig. 4). Since, under these cir-
cumstances, it is impossible to obtain the molecular weight, M, , the quantity
of interest is the mass per unit length, M,/L,, where L, is the total contour
length of the DNA molecule. The value of M,/L, reported at zero ionic
strength is 197 mass units per A. The interaction term, D, is then given by
the relation:

D= (M,/L,) clt);l;erimental 1 an

Application of equations (12), (15), (16) and (17) to the literature data as a
function of salt concentration leads to the results of Table 2. In both salts, D

TABLE 2. PREFERENTIAL BINDING OF WATER BY DNA

my M>[L2(® D®) y(e) Omio[oma(d)
(moles H:0/A DNA)

NaCl

3.0 130 —0.341 —0.42 7.1

20 151 —0.233 —0.25 6.7

1.0 173 —0.121 —0.14 74

0.5 180 —0.084 —0.09 10.0

0.2 193 —0.020 —0.022 59
NaBr

1.48 123 —0.377 —0.22 7.8

1.09 139 —0.297 —0.17 84

0.74 166 —0.159 —0.09 6.6

(a) Data taken from Luzzati, Nicolaieff and Masson (1961), recalculated into mass units.

(b) Calculated according to equation (17).

(c) Calculated according to equation (12); Xv; was taken as 1, since binding of entire
salt is considered, rather than of particular ions.

(d) Calculated according to equation (16).

is found to become progressively more negative with increasing salt con-
centration, indicating a net repulsion of the salt by the nucleic acid. This is
reflected in the values of ¥, which show that the difference between the bulk
salt concentration and that in the immediate neighborhood of the macro-
molecules becomes progressively larger as the salt concentration increases.
This indicates that the macromolecule is interacting preferentially with the
solvent, or, in terms of a specific molecular model, a layer of water impenet-
rable to salt is formed around the DNA molecule. The degree of hydration
(0my/0my,) is found to be identical within experimental error for the two salts;
it has values of 0.68 g H,O/g DNA in NaCl and 0.70 g H,0/g DNA in NaBr.
This is in good agreement with the values calculated in the literature (0.68 g
H,0/g DNA) (Luzzati, Nicolaieff and Masson, 1961) using a geometric
analysis of the electron density of a specific model rather than a thermo-
dynamic approach to the problem.
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Cas? 3: Protein-protein interaction. Here both components 1 and 2 are
macromolecular in nature. The problem consists in obtaining values of 4,,
and ¥, from an analysis of the slope and of the parameter D. In order to
accomplish this it is necessary to possess a knowledge of M;, M2, A;; and
A,, . This is readily obtainable from scattering data on the two components,
each studied individually under conditions identical with those at which the
interaction takes place. The constants 4;, and A4, are obtained directly
from the slopes of these scattering curves and M; and M, from their inter-
cepts. Substitution of these parameters and of the value of « into equation 9
permits one to obtain D and 4, from the difference between this calculated
curve and the experimental one obtained on a mixture of 1 and 2 under
conditions of interaction. The value of 4;, shows the strength of the attrac-
tion between components 1 and 2 and is quite general in nature, since its
calculation involves no models nor any assumptions on the nature of the
interaction at the molecular level. If a model is then assumed, involving
molecular complex formation between 1 and 2, the stoichiometry of the
interaction may be obtained from equation (15) by calculating ¥, which is
the average number of molecules of protein 1 bound to a molecule of protein
2. This, of course, can then readily give the equilibrium constant of the
interaction and the usual thermodynamic parameters.

As an example, let us carry out this type of calculation on the very elegant
study described by Pepe and Singer (1959), who investigated by light scattering
the complexing of a univalent antigen, Ag (component 1) with a divalent
antibody, Ab (component 2). The successive steps involved in this calculation
are depicted in Fig. 2.* The data of Pepe and Singer are represented in this
figure by curves 1 to 4. These give, in turn, the scattering of the Ag-Ab
complexing mixture (curve 1), the antibody mixed with bovine mercaptal-
bumin, BMA (which has the same molecular properties as the antigen but
does not complex with the antibody) (curve 2), the Ag-Ab mixture with no
interaction (curve 3, deduced) and pure BMA (curve 4). The necessary infor-
mation for rigorous formal application of the three-component theory
analysis was obtained as follows. All the curves were recalculated first as
turbidities, since it is the scattered intensities of the various components
which are additive, and not the parameters Hc/At. Point by point subtraction
of the turbidities of curve 4 from those of curve 2 gives the turbidity as a
function of concentration for free antibody. This, calculated as Hc/Art, is
curve 5; its slope is 4,,/M,, needed to evaluate the first concentration de-
pendent term of equation (9); its intercept is 1/M, . When the turbidities of
this last curve (curve 5) are substracted from those of curve 3 (Ag-Ab mixture
with no interaction), the result is the turbidity of pure antigen (component 1)

* This case is somewhat complicated by the fact that no scattering data were available on
Ab in the pure state. As a result several extra steps were necessary to arrive at the necessary
values of A22 and Ma.
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FiG. 2. Three component analysis of light scattering data for the interaction of
two proteins (Pepe and Singer, 1959).

at the same conditions at which interaction occurs; plotting this as HclAt
(curve 6) yields 1/M; (intercept) and A,;/M, (slope), needed in the evaluation
of D and the second concentration dependent term of equation (9). Sub-
tracting the turbidities of this curve from the turbidities of curve 1 results
in the turbidities due to antibody alone (component 2), when it is in a state of
interaction with component 1. This result is represented in terms of Hc/Az
by the rectangles shown on curve 7. The deviation of these points from the
Hc/Ax values of non-interacting antibody (solid circles of curve 5) is a measure
of the thermodynamic interaction between Ab and Ag. Incurve 7 the pres-
ence of component 1 is manifested only through the thermodynamic inter-
action terms, i.c. by the values of 4;,; it does not make any contribution to
the measured molecular weight, nor is any assumption involved about the
nature of the interaction, i.e. no models are postulated. The sharp decrease
of Hc/At with concentration found in curve 7 manifests the presence of a
strong attractive force between components 1 and 2. From the ratio of the
Hc/A values of curve 7 to 1/M, the factor D is obtained within the approxi-
mation of neglect of the contribution of 4, to the slope. Use of equations
(12) and (15) yields approximate values of 4;, and V. Successive repetition
of this process results in exact values of 42 and vforeach concentration point.
If the assumption is made that the interaction is one of complexing (which is
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true in this particular case), the intrinsic binding constant of protein 1 to
protein 2, k;,, may be evaluated as

v
kyy = ———— (18)

nm'y —vm’'y

where 7 is the total number of binding sites on component 2 and m', is the
molar concentration of unbound component 1, namely m’y = my — vm, .
Using the method described here, the value of k, , obtained was found to be
(1.85 + 0.25) x 10* 1./mole which is in good agreement with the value
deduced by Pepe and Singer. The points calculated at each concentration
using this value are represented by the open circles of curve 7 of Fig. 2. Itis
interesting to note that here, contrary to the usual situation in light scattering,
the concentrations of both components 1 and 2 extrapolate to zero. As a
result, curve 7 extrapolates to the true value of 1/M,, the system reducing
to a two-component one at infinite dilution. ' :

In this section at attempt has been made to show by a series of examples
how light scattering and small-angle X-ray scattering may be used to determine
the thermodynamics of interactions. In the next section we shall demonstrate
how a combination of these two techniques can yield considerable infor-
mation on the geometry of biological systems.

GEOMETRY OF SCATTERING

The thermodynamic treatment described in the previous section was based
on the assumption that either the scattering data were extrapolated to zero
angle or that the particles were small relative to the wavelength of the incident
radiation; the latter situation prevails in the case of light scattering of most
globular proteins. In the case of particles whose dimensions are large com-
pared to the wave length, interference effects occur between individual
scattering elements within a particle with the result that the scattering envelope
is asymmetric and the intensity diminishes as the angle formed between the
scattered and incident beams increases. This information is the basis of par-
ticle geometry determination.

Debye (1915) has shown for both light scattering and small-angle X-ray
scattering that the angular dependence of the scattering of a particle of any
shape, averaged over all orientations, is given by (see also Guinier, 1956):

1 sin 2msry;

N N
0D M v
k Jj

27Ty

It
|
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where N is the total number of scattering elements in the particle, r,; is the
distance between elements k and j, 4 is the wavelength of the incident radia-
tion and 0 is the angle formed between the incident and scattered beams.
Using this equation, the angular dependence of the scattering of particles of
various shapes has been calculated. (These will not be discussed here, the
reader being referred to references cited at the beginning of this article.)
Guinier (1939) has shown that at very small angles the scattering intensity as
a function of angle, i(s), is closely described by

i(s) = i(0) e ~ %R (20)

where R is the radius of gyration of the particle. This is known as the Law of
Guinier and it is independent of the shape of the particle. In this angular
region, a plot of log i(s) as a function of s? approaches linearity; R is obtained
from the limiting slope, while the intercept yields i(0) from which the molec-
ular weight of the particle and thermodynamic properties of the system may
be obtained as described above.

At higher values of s, i(s) deviates from equation (20), the curve becomes
highly dependent on the shape of the particle and, in some cases, passes through
maxima and minima. Such data may be treated by specific equations derived
for particles of various shapes. At large values of s, i.e. when s is large with
respect to the reciprocal of the smallest dimension of the particle, the scatter-
ing intensity becomes proportional on the average to the fourth power of the
scattering angle (Porod, 1951): :

) 1
sti(s) ~ P (0% — Po)’ NSy 2D

where p, is the electron density of the particle, p, that of the solvent, N, is
the number of particles and S; is the surface area of one particle. Equation
(21) is valid only when particles k have a uniform electron density. This
angular region may be used to determine the surface area of the scattering
molecules. We shall show now by the example of ribonucleic acid (RNA)
and f-lactoglobulin how a combination of light scattering and small-angle
X-ray scattering can be used to advantage to obtain detailed information
on the geometry of a complicated molecule.

Ribonucleic Acid

The high molecular weight RNA fraction of ascites tumor cells has been
studied under identical conditions (pH 6.8, I'/2 = 0.14 NaCl; 0.01 Na
phosphate) by light scattering (Kronman, Timasheff, Colter and Brown,
1960) and small-angle X-ray scattering (Timasheff, Witz and Luzzati, 1961).
For the sake of comparison, the results of the two techniques have been
plotted together on Fig. 3. The light scattering data obtained at a single
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Fic. 3. Light scattering and small-angle X-ray scattering of high molecular weight

RNA. Circles: light scattering data; curve 1: Guinier plot in closest agreement

with experimental data; curve 2: Excess small-angle X-ray scattering over

contribution of internal structure. The intensity (ordinate) is expressed in terms
of apparent molecular weight in electrons.

concentration are plotted as the circles in Fig. 3. The solid line (curve 1) is a
Guinier plot which fits best these data. Its analysis results in a Z-average
radius of gyration of 315 + 35 A and a weight average molecular weight of
1.32 x 10° (or 6.74 x 10° electrons). At low angles, the experimental points
are found to follow reasonably well the Guinier Law (equation (20)); at higher
angles, an upward deviation becomes apparent. These light scattering data
indicate that the RNA molecule is a rather compact particle with a maximal
dimension close to 1000 A.» Ultracentrifugal analysis has shown this RNA
to be a mixture of molecules of two sizes, one (comprising 63 per cent of the
total RNA) having a molecular weight of 1.9 x 10, the other (37 per cent)
a molecular weight of 3.2 x 10°.

Small-angle X-ray scattering measurements on this material resulted in the
data plotted on Fig. 4.* The open circles represent the experimental points on
freshly prepared RNA. The data were analyzed by comparison with theoreti-
cal curves for particles of various shapes. It was found that for s greater than
0.01 A~!, RNA behaves like a rigid rod, with a cross-sectional radius of
gyration of 8.2 A and a mass per unit length in reasonable agreement with a
Watson~Crick double helix. The solid line is the calculated theoretical curve

* The scattering intensities expressed in Fig. 4 by the symbol j(s) were obtained using
an infinitely long slit optical system. These values can be reduced to the point source optics
intensities, i(s), used throughout this paper, by mathematical transformation (see Guinier
and Fournet, 1955, or Luzzati, 1960).
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FiG. 4. Small-angle X-ray scattering of RNA. Open circles: fresh RNA; filled
circles: same after 2 days at room temperature; triangles: same after 18 days at
room temperature.

for a rigid rod having a length infinite with respect to the maximal resolution
of the experiment (Porod, 1948 ; Luzzati, 1960). At values of s below 0.01 At
the points deviate upward from this curve and fit rather well the theoretical
curve for a zigzag chain of short rigid rods, the length of each rod being ca.
85 A. The theoretical curve for this case is shown by the dashed line (Hermans
and Hermans, 1958; Luzzati and Benoit, 1961). Slow thermal degradation
of the RNA resulted in a scattering pattern in which the intensity at s <
0.01 A~! slowly decreased with time until it reached final values given by the
triangles. These correspond well to the theoretical curve (dot-dashed line)
for independent rods with a length of ca. 85 A and a cross-sectional radius of
gyration of 8.2 A. From these X-ray scattering data it was concluded that the
structure of this RNA under conditions close to physiological is that of a
zigzag chain of rods, ca. 85 A in length and a cross section equal to that of a
Watson-Crick double helix.

At values of s smaller than 0.003 A1, the experimental data on fresh RNA
are seen to rise above the theoretical curve for a broken-rod. This can be
interpreted as the contribution of the tailing-off of the scattering from the
molecule as a whole, i.e. the same entity as that observed by light scattering.
When the theoretical scattering for the detailed structure of the molecule
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(dashed line) was subtracted from the total observed scattering, the remainder
gave the angular dependence shown by curve 2 of Fig. 3. The tendency of this
last curve toward the light scattering experimental points indicates consis-
tency between the two sets of data. \

The radius of gyration of the molecule, as observed by light scattering, was
then calculated from the small-angle X-ray scattering data. According to
Hermans and Hermans (1958) the radius of gyration, R, of a zigzag chain is:

R* = (4%/6) (N-1 + 1/2N) 22)

where 4 is the length of the subunit (85 A in this case), and N is the number of
subunits per chain. Assuming that RNA is a long broken Watson—Crick
double helix, the numbers of subunits (N) in the two components are 106
and 18, respectively, resulting in radii of gyration of 355 A and 143 A (equation
(22)). From these values and the ultracentrifugal composition, we obtain
R, = 340 A, which is in reasonable agreement with the light scattering value

SMALL-ANGLE

LIGHT SCATTERING X-RAY SCATTERING

o ° '
3,000 A 300A

FiG. 5. Structures of RNA and DNA as seen at the levels of resolution of light
scattering and small-angle X-ray scattering.

of 315 + 35 A. This example has shown how the different orders of resolu-
tion of the two scattering techniques can be used to advantage to obtain
simultaneously the overall and detailed internal structures of a large biological
molecule. This is depicted in Fig. 5, which shows schematically the structure
of RNA as seen by light scattering and small-angle X-ray scattering. For the
sake of comparison, a molecule of DNA is also shown. It is obvious that,
while in X-ray scattering DNA appears as an infinitely long rigid rod, in light
scattering its behavior is closer to that of a worm-like chain. This is indeed
the situation found experimentally.
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B-Lactoglobulin A

The second example is that of a small globular protein which assumes
various degrees of aggregation as a function of pH. A detailed study of this
protein (Timasheff and Townend, 1961) has shown that, while in the iso-
electric region it has a molecular weight of 36,000, as the pH is lowered,
it first undergoes a reversible tetramerization (molecular weight 144,000), and
then a dissociation in half (molecular weight 18,000). Green and Aschaffen burg
1959) have further shown by X-ray crystallography that the 36,000 molecular
weight species has the structure of two identical touching spheres.

A small-angle X-ray scattering study has been carried out on this protein
under isoelectric conditions as well as in the pH zone in which it undergoes
tetramerization (Timasheff, Witz and Luzzati, to be published). The mole-
cular weights found under these conditions were essentially identical with those
measured by light scattering. The radii of gyration are 21.7 + 0.4 A for the
isoelectric species and 34.4 + 0.4 A for the tetramer. These values were
compared with theoretical ones calculated for a number of models. The iso-
electric value of the radius of gyration is found to be consistent with a mole-
cule not much different from the double sphere model of Green and Aschaffen-
burg (1959), deduced from crystallographic studies.

In the case of the tetramer, thermodynamic analysis of the light scattering
data (equation (11)) showed that the aggregate must be in the shape of a
closed ring. The calculated radius of gyration for such a ring of four Green
and Aschaffenburg units is 36.2 A; this is in good agreement with the experi-
mentally found value of 34.4 A. Considering the approximations made in the
selection of simple geometric forms for molecules which in reality must be
irregular in shape, this degree of agreement can be considered as complete
verification by the small-angle X-ray scattering geometric analysis of the
deduction reached from the light scattering thermodynamic study.

While the principal shape parameter obtained from scattering studies of
interacting systems is the Z-average radius of gyration, small-angle X-ray
scattering is also capable of yielding the surface to volume ratio, the volume
and the degree of internal hydration of a molecule. In the case of interactin g

-systems, however, these become rather complicated average quantities and
will not be discussed here. ‘

CONCLUSION

The present analysis of light scattering and small-angle X-ray scattering
data has shown these two techniques to be powerful tools for the understand-
ing of interacting biological systems. While each is capable of yielding infor-
mation on the thermodynamics and geometry of the interactions, it is through
a combination of the two that the most powerful structural analysis of biologi-
cal complexes in solution can be obtained.
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