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Abstract

It is commonly believed that the optimum solvent ratio in countercurrent
distribution and chromatography may be expressed as V' = Vy/VL = (Kp,
Kp)~12. Here Vy and V; are the volumes of mobile and stationary phases.
This expression, proposed by Bush and Densen and widely accepted, leads
to optimum separations only under special conditions. Under most commonly-
encountered situations in chromatographic and countercurrent systems, better
separations may be achieved by reducing ¥ to the lowest practicable level.
Measures of separation effectiveness include resolution, extent of separation,
total percent impurity, and quantity factor, the latter two of which are herein
developed. Computer simulation is used for testing existing separation para-
meters and developing new ones on.a rational and scientific basis.

Finding suitable stationary and mobile phases in countercurrent distri-
bution (CCD) and liquid chromatography (LC) is a critical problem.
When systems are found in which the physical and chemical properties,
as well as economic factors in preparative fractionations, are appropriate,
separations may be carried out. The effectiveness of the fractionation will
depend upon several additional factors. Of these the choice of cutpoint in
the distribution profile and solvent-volume ratios are considered in this
work. All data are the result of mathematical computation and computer
simulation. '
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144 » METZGER, BARFORD, AND ROTHBART

CHOICE OF CUTPOINT

In either preparative or analytical work, separation of two components
from one another requires at least three boundaries. These are at the
leading and trailing edges of the distribution profiles and between the two
solute profiles. The latter of these is the cutpoint under discussion.

. When choosing this point in a distribution profile, two factors must be

considered. The resulting fractions should be high in purity and should
contain relatively large amounts of the desired components This is
especially true for a preparative experiment. To express these concepts
of purity and quantity mathematically, the following notation for a two-
solute two region system is used.

m;; = the number of moles of Component i in Region j;
i=12; j=1.2.

m;, = total number of moles of Component i.

m,; = total number of moles in Region j.

J
m,, = total number of moles of both solutes.

Here the ¢ represents summation over the missing subscript.

The concept of “total percent impurity” (TPI) will be used as a measure
of quality. In the following discussion it is assumed that Component 1 is
favored in Region 1 and Component 2 is favored in Region 2. The im-
purity of Region 1 is defined as m,,/m,,, that is, m,,/(m,, + m,,). Then

TPI = 100(’112 + @) )
my My : )
The total amount of solutes partitioned into their appropriate regions
is'represented by the “quantity factor” (QF):
 QF =my; + m,, ) ¥)]
An unstated goal of many separations is the maximization of QF and the
minimization of TPI. Although more than one boundary between the

- profiles may be utilized, the present discussion is restricted to single cut-

points in order to fulfill the first of these goals. No cutpoint which meets
both of these goals is known (7). Glueckauf (2) proposed that a cut be
made such that the impurities in each region were equal, i.e., my[m, =
my,/m,,. The utility of this approach was discussed for separations where
the components were almost completely resolved. As Said (3) pointed out,

“an analytic expression cannot be derived which predicts this cutpoint for

actual chromatographic zones of the normal distribution type when m,, #
my,. Under this condition the “optimum” cutpoint is difficult to locate.
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CHROMATOGRAPHY AND CCD A 145

When equal amounts of the two solutes are to be separated, the “impu-
rities equal” cutpoint occurs at the geometric mean of the retention
volumes and tends to give low values of TPL

Rietema (4) has proposed an “efficiency number,” E, for evaluating

separations, and Rony (5) has described a similar term which he called

“extent of separation,” £. Some forms of these terms for a two-component
two-region separation, using the aforementioned notation, are

My My
my, My,

myy +m22
my, My,

E= —¢= ~1 6)

In elution chromatography, for which CCD is a model, it was proposed
that the optimum cutpoint is that which maximizes . For Gaussian dis-
tribution profiles this point corresponds to the intersection of the nor-
malized profiles (6).

The third cutpoint discussed is that at the intersection of the two molar
distribution profiles. This cutpoint maximizes QF because it as31gns to
Region 1 all fractions containing a majority of Solute 1 and to Regxon 2
all fractions containing a majority of Solute 2. No assumptions are made
about the shape, height, or width of the distribution profiles. This makes
~ the intersection an extremely useful cutpoint when multiple inputs are
used or when the partition coefficients are known to vary with concentra-
tion. In certain cases a mathematical expression can be written for the
location of the intersection cutpoint. When a single input of solute is
introduced and the conditions are ideal, i.e., constant K,, Vy, ¥V}, and no
imperfect transfer effects, the volume of effluent at the intersection can
be written

. VRlaz VRzal + 0'10'2\/(0'2 - 0'12)2 ln <m1x02) + (VRz - I/R‘)2
Vy = my,04
X — 7 2
: o7 — o
: @
The transfer number 7y at the intersection is :
ny = Vy/Vy )
where ' .
ViV % .
. = . Lt 4 6
= (%) ©
= R(Vy + Vi/Kp) .

and R = the number of tubes in the apparatus. Throughout the manu-
script the convention Kj,, > Kp, is used.
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146 ) METZGER, BARFORD, AND ROTHBART

The above equations are valid for effluent profiles. In the so-called
“fundamental method of operation” where a limited number of transfers
is performed such that the solute profiles remain in the apparatus, the
solute profiles intersect when

( )Pn '’ = (’:)pz'qz"" | ' - ®

where
. VK. R
p = —D
1 + VK,
_ 1
=157k,
V = VU/VL

and n = number of transfers.

Solving Eq. (8) for r gives the serial number of the tube where the molar
profiles intersect .

241 ' &)
]n 22
91

The equation for finding the intersection of ideal frontal curves has
already been described (7). For intermediate cases or when nonideality

occurs, computer simulation may be used to predict the intersection.

cutpoint.

When a total-amount curve such as the solid line in Fig. 1 is encountered,
in which it is impossible to get estimates for the retention volumes and the
standard deviations, the total curve must be resolved into its individual
components. Procedures for resolving curves which are assumed to be
Gaussian or skewed Gaussian have been described (8). The curves shown in
Fig. 1 correspond to the experiment with the.molar solute ratio of 10.0/1.9
in Table 1. The three cutpoints discussed above are indicated on the figure
and are: A, the intersection of the normalized distribution profiles; B,
the intersection of the molar profiles; and C, the cutpoint which gives
equal impurities.

Table 1 shows the results of three computer simulations. The initial con-
ditions are the same for the three experiments except for the number of
moles of solute 2, m,,. The mass balance for the cutpoint which gives the
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. .Fia. 1. Location of cutpoints. See text and Table 1.

minimum total percent impurity was calculated and is included for refer-
ence. Of the three discussed, Glueckauf’s cutpoint gave the lowest TPI
for unequal solute ratios, but highest for equal solute ratios. As was
predicted, the highest value of QF was always found for the intersection
of the molar profiles cutpoint. Values are calculated for ¢ in Table 1. In
the case where the solute ratio is 1, the two intersection cutpoints are
equivalent. When the solute ratio is different from 1, the same cutpoint
for the intersection of the normalized distribution profiles applies since
& is independent of initial solute amounts. For effluent profiles where the

conditions of ideality are met, the cutpoint which optimizes ¢ is therefore

always found by Eq. (4) with the term m, /m,, omitted.

The validity of ¢ as a universal index of separation has been questioned
(I). The quantities recovered and the purities of each component and
TPI experiments shown in Table 1 are clearly different. Yet following the
procedure for determination of ¢ optimum, one would have to conclude
that the same separation had occurred in all three cases. It would appear
that ¢ is not meaningful for comparing experiments of this type. Likewise,
& is inappropriate within a given experiment (m,, # m,,) for indicating a
good cutpoint. The clearest example of this is found in Table 1 where the
solute ratio is 10.0/1.9. The cutpoint that corresponds to the highest value
of ¢ also corresponds to the lowest values of QF and the highest value of
TPI, indicating that this cutpoint is the poorest of the three.

.
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TABLE 1

Comparison of Cutpoints

My Description Cutpoint
My, of cutpoint No. TPI myy may my2 My ¢ QF

10.0° - Intersection of  65/66 50.6 8.63 034 137 1.56 0.68 10.2
1.9 - ‘normalized
profiles
Intersection of  81/82 268 974 078 026 112 0.56 10.9
molar profiles
Impurities equal 90/91 187 991 104 009 086 044 108
Minimum total 110/111 145 999 150 001 040 021 104
percent
impurity )
10.0  Intersection of ~ 65/66 31.7 8.63 1.81 137 8.19 .0.68 16.8
10.0 normalized
profiles’ .
Intersection of  65/66 31,7 863 181 137 819 0.68 16.8
- molar profiles
Impurities equal 63/64 322 835 1.57 1.65 843 0.67 16.8
Minimum total  69/70 31.3 9.07 233 093 7.67 0.67 167
percent '
impurity )
Intersection of  65/66 36.6 8.63 344 137 15.56 0.68 24.2
normalized
profiles
Intersection of ~ 59/60 342 7.68 218 232 16.82 0.65 245
molar profiles ] _
Impurities equal 53/54 332 636 123 3.64 17.77 0.57 24.1
Minimum total  52/53 33.2 6.10 1.10 390 17.90 0.55 24.0
percent
impurity

k| bk
O|O
[ )

o

Resolution is often used as a measure of separations. Problems in the
use of this concept have been discussed (9). It appears that there is no
single concept that fully measures the amounts and purities of separated
components. Similarly a cutpoint cannot be found which minimizes the
impurity and maximizes the quantity of the separated components
recovered. The “best separation” is that which meets the desired goals.

SOLVENT VOLUME RATIO
One of the easiest parameters for an experimenter to adjust in liquid

extraction is the solvent-volume ratio. The expression of Bush and
Densen (/0) for the solvent—volume ratio

V=VylVL= (Kp,Kp)™* (10)
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gives the best separation under certain conditions. In CCD this ratio
gives the best separation when the fundamental method of operation is
used and when the number of transfers is a constant. In this procedure a
limited number of transfers is performed such that essentially no solute
leaves the instrument. Often the number of transfers performed is equal
to the number of tubes. For example, in a 50-tube CCD instrument in
which 50 transfers are to be carried out, the optimum solvent-volume
ratio is given by Eq. (10). Computer simulations of this case were per-
formed using partition coefficients of Kp, = 1.5and K},, = 1.0. From Egq.
(10) the optimum solvent ratio is 0.8. The results are summarized in Table
2 for the intersection cutpoint. Clearly, 0.8 is the best solvent volume ratio.
The results of performing 70 transfers in the 50-tube distributor are also
given. Again for 70 transfers, 0.8 is the best solvent volume ratio.

TABLE 2

Comparison of Solvent-Volume Ratios for a Constant Number
of Transfers in the Fundamental Procedure®

v n QF TPI n QF TPI
1.0 50 1.52 47.8 70 1.57 404
0.8 50 1.52 47.6 70 1.60 39.6
0.5 50  -1.51 48.9 70 1.59 40.9
0.125 50 1.37 62.6 0 143 56.1

“Kp, = 1.5, Kp, = 1.0, R = 0.

In a more exhaustive study of solvent-volume ratios (/1), Eq. (10) was
verified by simulations of a 200-tube instrument when 200 transfers were
carried out.

-Grushka’s derivation of the Bush and Densen relation (12) agrees with
this conclusion. However, it will be shown that the Bush and Densen
ratio is not an optimum for all CCD operations, but only for the special
case that Grushka considered, i.e., the number of transfers is a constant
and is less than the number of tubes in the CCD train. In addition, Eq.
(7) of Ref. 12 is somewhat misleading because n,., cannot always be
carried out with the tubes or stages at hand. These relationships will be
discussed later in this report.

In the fundamental procedure, the maximum number of transfers per-
formed before some fraction of solute leaves the instrument can be
calculated. The distribution of a solute profile in a CCD train is shown in
Fig. 2. The quantity ¢ is a factor times the standard deviation of the solute
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MOLES OF SOLUTE

0 ' I max R-1
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FiG. 2. Distribution profile inside the countercurrent distributor.

profile such that some fraction, F(¢), of the solute is still inside the instru-
.ment. For instance, when ¢ = 2.326, 99 % of the solute is inside the CCD
train. The peak maximum is given by

rmax = np .

and the standard deviation is

¢ = \/npq

The maximum number. of transfers before some fraction of solute leaves
the instrument occurs when
Fmax =R —=1—1to

.

Substituting and solving for ./n gives

\/r_z . —t/pq £ Jt?pq + 4p(R — 1)
2p
Only the positive root is meaningful. In terms of K,

Ji=Tlt JEZ AR =D + VKp)
2JVK,

The three simulations in Table 2 were extended to the maximum value of
n for the fundamental procedure. The results are presented in Table 3.

The solvent volume ratio of 0.125 gives the lowest TPI and 0.8 the
highest total TPI. The observed value of n from the computer simulations
agrees exactly with the value calculated from Eq. (11). The values for
resolution within the distributor R| give additional evidence that the solvent

(an
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TABLE 3

Comparison of Solvent Volume Ratios for a Variable Number
(Eq. (11)) of Transfers in the Fundamental Procedure

v " n TPI R/C R/

0.8 72 72 39.0 0.41 0.43
0.5 89 89 354 0.44 0.47
0.125 229 229 29.8 0.54 0.52

¢ Computer simulation

b Equation (11).

< Equation (12).

¢ Equation (13)..

" volume ratio of 0.125 has given the best separation. The observed value
of R/ is found by
3 Foax: — T,
R ¢ . _max; maxz 12
s 20 1 + 20 2 ( )
The numerator of Eq. (12) has only one significant figure in our 50-tube
experiment, which explains the discrepancy between the observed and
predicted values for resolution. The predicted values of resolution are
given by
- 0.5./nV(Kp, — Kp,)
VEKp, (1 + VKp) + JKp,(1 + VKp)
‘When computing the observed value of resolution, an estimate of the
standard deviation must be made. The normal density function with a

standard deviation of 1 and area of 1 has a height of 0.3989. Assuming
the observed distributions are nearly Gaussian, o can be estimated by

- = (._______0-3989 )area (14)

RS (13)

observed height

Calculations of & from Eq. (14) agree very well with theoretical values of
o from the binomial distribution ¢ = \/npg. A comparison of ¢’s is made
in Table 4 using data from the simulations in Table 3.

Equation (14) is especially valuable for estimating o’s when the distribu-
‘tion profile is narrow. ‘

The results of Table 3 show that the Bush and Densen equation, Eq.
(10), does not give the best separation when n is a variable. Since resolution,
Eq. (13), is proportional to N n, smaller values of ¥ allowing more transfers
lead to better R, and TPI values. Equation (13) is rather misleading be-
cause it appears that as ¥ — 0, R/ — 0. For V = 0, of course, no separa-

S o
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e
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TABLE 4

Theoretical and Caiculated Values of the Standard Deviation
of Solute Profiles

V=025 n = 229 V=20.5,n=289 V=08n=72

Kp=10 Kp,=15 Kp=10 Kp=15 Kp=10 K,=15

o 476 5.52 449 468 423 4.25
o 476 552 445 4.67 422 423

¢ Equation (14). :
® Binomial distribution +/7pg.

tion is possible but the behavior of R/ as ¥ becomes a very small number
must be examined by incorporating the concept of # as a variable. Sub-
stituting for # from Eq. (11) into Eq. (13) gives

R = W2+ 4R - D1 + VK,) — 1)(Kp, — Kp)
: 4 /K, Ko, (1 + VKp) + 4K, (1 + VKp)

The K}, in Eq. (11) is K, ; that is, the faster moving peak. Equation (15)
is plotted in Fig. 3 using parameters from the previously discussed system;
thatis, K, = 1.5, Kp, = 1.0, R = 50, and ¢ = 2.326. The values of R/ for
¥ < 0 are not physically realistic but the shape of the curve is of interest
because in some systems the maximum will occur at a + V value. The
maximum value of Eq. (15) occurs at

vt (K VL ket 2 )
KR = P\ K,, A

The first term is small compared to the last two, so that for Ky, = 4K},
the maximum R, will occur at a + V value. When Kp, < 4Kp,, however,
the smallest possible solvent volume ratio will give the highest value of R,’.

Up to this point we have been considering the fundamental procedure
method where the solute remains in the CCD apparatus. In the single
withdrawal method of operation, transfers are performed until the solutes
have been eluted from the instrument. For a given number of tubes, R,
the single withdrawal procedure gives a better separation than the fun-
damental procedure because more transfers are performed.

Using arguments similar to those in the derivation of Eq. (11), we can
calculate the number of transfers necessary to elute all but a given percent
of solute from the instrument. In this case we want Fmax = R — 1 + to.
The expression relating n and V is I

~_t+ 2+ 4R =D + VKp)
Vi - N7 S an

(15)
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FIG. 3. Effect of solvent ratio on resolution inside the distributor.

Equation 3(17) is plotted in Fig. 4 for K, = 1, R = 50, and ¢ = 2.326.
In calculating Eq. (17) the slower-moving peak with partition coefficient
K, should be used. Computer simulations of the single withdrawal method
were performed using the same parameters as in the fundamental pro-
cedure simulations. Equation (17) was tested for both partition coefficients.
As shown in Table 5, the simulations agree well with the prediction from
Eq. (17).

The values of ¢ in Table 5 from the computer simulation are found by
Eq. (14). The theoretical o is given by

B e

The e'qtfxation for resolution when operating in the single withdrawal
method is given by

Ro— R¥(Kp, — K»)
* 7 2Ky, (VKp, + 1)F + 2Kp,(VKp, + D)*

Here the behavior of R, the resolution of the peaks in the effluent as a
function of ¥, is clear. As ¥ becomes smaller, R; increases. Figure 5 shows
a plot of R, vs V for the aforementioned parameters. Clearly the smallest
solvent-volume ratio will give the highest resolution. Values of R; calcu-

19)
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FIG..4. Number of transfers required to elute 999 of solute.

TABLE 5§

Number of Transfers Required for Near Complete Removal of
Solute from CCD Train for Various Solvent Volume Ratios

» Kp =10 Kp=15

vV nt n® o° a® n n o° a®
0.125 602 601  60.00 59.54 420 420  41.00 4112
0.5 193 193 1732 1709 147 148 1247 1239

0.8 141 142 11.85  11.77 112 . 113 8.74 8.67

¢ Equation (17).
* Computer simulation.
¢ Equation (18).
lated and observed and TPI values are given in Table 6.

Bush and Densen described a method of operation which is between the
single withdrawal and the fundamental procedure. In this intermediate
case, transfers are performed until the intersection of the molar profiles
is at the last tube in the apparatus. The number of transfers required is
found by rearranging Eq. (9). In Eq. (20), R is fixed and n is the variable:

In?t
n=R|-224 (20)

In 22

qi

E
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FiG. 5. Effect of solvent-volume ratio on resolution in the CCD output profile.

04

TABLE 6

Comparison of Solvent-Volume Ratios for Single
Withdrawal Procedure

1% TPI R? R?
‘ 0.125 18.3 0.651 0.659
o 0.5 26.0 0.541 0.559
0.8 30.8 0.514 0.506

2 Computer simulation.
® Equation (19).

Carrying out the number of transfers given by Eq. (20) results in an
effluent fraction of m,,; and m,, and a fraction remaining in the apparatus
of m,, and m,,. An alternative statement of Eq. (10) is p; = ¢,, s0 that
Eq. (20) simplifies to n = 2R for the solvent-volume ratio given by Eq.
(10). Simulations of the intermediate case were done for R = 50, Kj, =
1.5, and Kp, = 1.0. The results are summarized in Table 7 and indicate
that the optimum solvent-volume ratio for the intermediate case is not
that given by Eg. (10).

Clearly Eq. (10) is not an optimum for CCD in either the fundamental
procedure method, the single withdrawal method, or for the intermediate
case. The same conclusion that low values of ¥ give the best separation
also holds for partition chromatography for which countercurrent distri-

|
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TABLE 7

Comparfson of Solvent—Volume Ratios for the Intermediate Case

Inside Outside
| 4 n® n" Maa mio My msy, TPI QF
1.0 91 91 0.83 0.17 0.83 0.17 33.8 1.66

0.8 100 100 0.84 0.16 0.84 0.16 31.2 1.69
0.5 132 132 0.86 0.12 0.88 0.14 26.0 1.74
0.125 375 375 0.90 0.09 0.91 0.10 18.3 1.82

% Equation (20).
® Computer simulation.

bution is a model. In partition chromatography this corresponds to
keeping the void volume small.

In practice an experimenter must consider factors such as time and cost
of separations. A resolution of 1.0 will be sufficient, especially in analytical
work. From experimental values of partition coefficients the value of ¥
that will give a resolution of 1.0 can be predicted. Setting the left-hand
side of Eq. (19) to 1.0 and solving for V gives a very cumbersome expression
to evaluate. If, however, the approximation

(Kp,V + D (Kp,V + ) = [(KblKDz)%V' 1
is made, the expression for ¥ which gives a resolution of 1.0 is quite simple:
R(Kp, — K) 1
4\Kp, + Kp,

V= ko @n

For a value of R; other than 1.0,

Kp, — Kp \?
R(Z2 = 2p:)"_ 4R
K V — <KD1 -+ KD;) s

z 4Ky Kp) 'R

Equations (21) and (22) can give negative results, indicating that a sepa-
ration giving unit resolution is impossible for the given Kp,, Kp,, and R.
In this case the experimenter may wish to increase R to get the desired
resolution. A lower bound for R can be found from Eq. (19) by setting
Ry=10and V = 0:

22

LY

 (Kp, + Kp\*
R = (Kot Ko, D,> 23)
) . <KD1 - KD )

2
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FiG. 6. Eﬂect of solvent-volume ratio on resolution, intermediate case.

Consider the experimental pax;ameters presented in Table 6. Evaluation of -

Eq. (21) gives a negative volume, so R must be increased to obtain unit
resolution. This agrees with Fig. 5 which also shows that unit resolution
is impossible for R = 50. From Eq. (23) the lower bound on R is 100
tubes. A realistic choice of R for this separation would be 150 tubes.
Figure 6 shows that with the proper choice of ¥, a resolution of 1 is well
within reason for K, = 1.5, K, = 1.0, and R = 150. After selecting V'
and R, the number of transfers required is given by Eq. (17).

Small solvent-volume ratios require many transfers and consequently
a long time. This is a definite disadvantage. A point in favor of small
solvent-volume ratios is that the total amount of mobile solvent is reduced.
The total upper phase volume required to complete a single withdrawal
experiment is

: Vureq = nVU = nVVL‘
Substituting fér n from Eq. (15), we get
Vo 12+ 2R = (1 + VKp) + 17 + AR = DU+ VKD g
VL i 2K,

This equation is plotted in Fig. 7 for the parameters from the above
discussion with Kj, = 1.0, R = 50, and ¢ = 2.326.

While theoretical considerations may indicate low values of ¥, several
other factors limit the lowest volume ratio that can be used in CCD.
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Fic. 7. Volume of mobile phase required to complete a single withdrawal
operation.

Phase diagrams of systems studied in our laboratory (13) show, for exam-
ple, that when the solvent ratio is low, the isopycnic region is encountered
at low solute levels. Also, the experiment can be altered by the fraction
of upper phase retained in each tube (14). Using a larger ¥y would lessen
this effect. So while theoretical predictions and computer simulations
indicate that ¥ should be very small, practical aspects must be considered.

CONCLUSION

_ A cutpoint cannot be found which maximizes both the TPI and QF
of the solutes. The intersection cutpoint was selected to compare ex-
periments because it is relatively easy to find, maximizes the quantity
factor while giving low values of the total percent impurity, and is mean-
ingful for all sizes and shapes of distribution profiles. In general, the lowest
possible solvent-volume ratio, not the Bush and Densen ratio, will give
the best separation.

Computer programs for simulation of countercurrent distribution are
available from this laboratory upon request (15).

SYMBOLS

E  efficiency

K, partition coefficient, concentration of solute in upper phase/
concentration of solute in lower phase
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m;;
n
nx

p

QF

rmax

amount of Component i in Region j
number of transfers ,
number of transfers to the intersection of the molar distribution
profiles
probability of finding a solute molecule in the upper (mobile)
phase _
probability of finding a solute molecule in the lower (stationary)
phase '
quantity factor
number of tubes in the apparatus
serial number of a tube within the apparatus
tube containing the maximum amount of solute
resolution of effluent solute profiles
resolution of solute profiles within the apparatus
ordinate of cumulative normal distribution,

F(t) = E‘ L ay

I

total percent impurity

solvent volume ratio = Vy/V,

volume of upper (inobile) phase

volume of lower (stationary) phase ‘

retention volume, the accumulated volume of effluent to the
solute peak _
accumulated volume of effluent to the intersection of the molar
distribution profiles '

Greek Letters

[

£

Vo NS LA W NN

standard deviation
extent of separation
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