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Vibrational Spectra, Assignments, and Valence Force Field
for S-nitrosocysteine and Isotopic Analogs

D. MICHAEL BYLER, HEINO SUSIL and WALTER V. GERASIMOWICZ
Eastern Regional Research Center,* Philadelphia, Pennsylvania 19118

S-nitrosocysteine and the isotopically-substituted S®NO and N-d; an-
alogs have been prepared. FT-IR spectra have been obtained on the
normal molecule and the *N isotopomer. Spectra of the N-d, analog
were obtained with a dispersive instrument. The fundamental frequen-
cies of the three isotopomers were calculated by using force constants
previously obtained through overlay calculations on amino acids and
from a normal coordinate analysis of methyl thionitrite. The average
computational error between the observed and calculated frequencies
using the transferred force constants was 11 cm~'. This difference was
decreased to 7 cm~! by slightly modifying some of the force constant
values by a least-squares refinement. Vibrational assignments are made
for all three isotopic analogs by utilizing the potential energy distribu-
tion. Out of a total of 96 fundamentals occurring above 300 cm™, 65
may be classified as group vibrations by the potential energy criterion.
Index Headings: Infrared; Force constants; S-nitrosocysteine; Thioni-
trite.

INTRODUCTION

Over the past few years we have carried out vibra-
tional studies involving a total of eleven isotopically-
substituted species (isotopomers) of the amino acids al-
anine,'? cysteine, serine, and B-chloroalanine.? During
the course of these studies a transferable symmetry va-
lence force field for amino acids was established by over-
lay calculations. For complex molecules of low symme-
try, such calculations provide the best available approach
for obtaining computationally meaningful force fields and
frequency assignments.>#8 In a parallel study, three iso-
topomers of methyl thionitrite were investigated, and
force constants for the CSNO group were established.”
The present study applies these results®’ to interpret
the vibrational spectra of three isotopomers of S-nitro-
socysteine (cysteine thionitrite): O“NS-CH,-
CH(NH),*)CO0-, 0*NS-CH,-CH(NH;*)COO-, and
01“NS-CH,-CH(ND,*)COO-.

S-nitrosocysteine is of considerable importance in food
safety investigations. The nitrosocysteine grouping may
result when sulfhydryl groups in meat proteins and bac-
terial proteins are treated with nitrite.>'! Nitrite is a
widely used antibacterial agent and color enhancer for
meat products.® A detailed interpretation of the vibra-
tional spectra of S-nitrosocysteine provides a basis for
the use of FT-IR and Raman spectroscopy in studies
involving nitrite action, via S-nitrosocysteine groups, on
foods and on bacteria. :

By applying transferred force constants from amin
acids'? and methyl thionitrite,” the frequencies of three
S-nitrosocysteine isotopomers were calculated with an
average absolute error of merely 11 cm™ (~1.2%). Slight
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adjustments, based on a least-squares refinement of a
few force constants, decreased this error by 40%, to ~7
cm™! (~0.7%). These results appear to confirm further
the reliability of our previous computations.

EXPERIMENTAL

S-nitrosocysteine was prepared following a slight
modification of previously reported procedures.® 0.348 g
(5.04 mmol) NaNO, (Baker Analyzed') was dissolved in
ca. 4 ml H,0. 0.886 g (0.504 mmol) L-cysteine hydro-
chloride monohydrate (Fisher Scientific Co.) was dis-
solved in about 6 ml H,0. The two solutions were cooled
to less than 2°C in an ice bath. Then the nitrite solution
was added to the cysteine hydrochloride solution. The
solution immediately became a characteristic bright red
due to the 543 nm absorption band of the -SNO moi-
ety.>!! One ml acetone was added to the red solution to
precipitate the S-nitrosocysteine. The red-pink solid was
filtered, washed several times with minimal quantities
of acetone, and finally dried. The N-deuterated species
was prepared in a similar manner with D,O (99 atom
%) from Aldrich as a solvent. Preparation of the *N-
labeled compound was carried out with sodium nitrite—
15N (95.7 atom % ) from Merck, Sharp, and Dohme, Can-
ada.

The reaction between nitrous acid and cysteine is
strongly pH dependent.!! Use of the acid chloride of cys-
teine, instead of the free base, provided a sufficiently
low initial pH for the reaction to proceed rapidly with-
out the need for any additional hydrochloric acid. Al-
though the toxicity of S-nitrosocysteine is unknown, this
compound should be handled with care. Reaction mix-
tures containing nitrite and cysteine have recently been
reported to exhibit both DNA-damaging and mutagenic
activity towards Salmonella typhimurium TA1535 and
TA98.12

Infrared spectra of the three isotopomers were ob-
tained by the KBr pellet technique, and by using Nujol
and halocarbon mulls on CsI and NaCl plates for differ-
ent frequency ranges. Initially, spectra of the normal
molecule and the N-deuterated analog were obtained on
a Perkin-Elmer Model 457 infrared spectrophotometer.
Later, spectra of the normal species and of the **N iso-
topomer were obtained from 4000-400 cm™ on a Nicolet
7199 Fourier transform infrared spectrometer.

Normal cordinate calculations were carried out by the
Wilson GF-matrix formulation,'® and by employing pre-
viously used mathematical procedures and computer
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TABLE 1. Force constants for S-nitrosocysteine.

Force Local symmetry
constant coordinate>® Value=? Dispersion®

1 v, NH,* 5.334 (5.369) 0.016
2 v, NH,* 5.399 (5.432) 0.021
3 5, NH,* 0.596 (0.618) 0.003
4 3, NH,* 0.648 (0.654) 0.006
5 py NH,* 0.755 -
6 pL NH,* 0.724
7 7 NH,* 0.049
8 v, CH, 4774
9 v, CH, 4.962

10 6 CH, 0.527 (0.545) 0.006

11 v CH, 0.637 (0.612) 0.006

12 t CH, 0.676 (0.664) 0.010

13 p CH, 0.474 (0.507) 0.016

14 7 CC-CS 0.106

15 v CH 4.741

16 6 CCH; 6 NCH 0.648

17 v, COO- 8.500

18 v, COO- 11.100

19 6 COO- 1.147

20 p COO- 1.430

21 v COO- 0.607

22 7 COO- 0.070

23 v C(3)C(8) 4.460

24 v C(2)C(3) 4.390

25 v CN 3.890

26 6 NC(3)C(8) 1.345

27 6 NC(3)C(2) 1.470

28 6 CCC 1.086 o

29 v NO 9.992 (10.230*)  0.073

30, v CS 3.240* cee

31 5 CCS 0.581

32 6 CSN 1.160*

33 7 CC-SN 0.013

34 7 CS-NO e

35 v SN 2.599 (2.900%) 0.051

36 6 SNO 0.939 (0.810%) 0.043

37 v CN, 6, NH,* —0.376

38 v, COO-, 5 COO~ 1773

39 6 COO-, » C(2)C(3) —0.320

40 v, COO-, p COO- 1.289

41 6 COO-, v COO- 0.036

42 v CS, » C(3)C(8) 0.227

43 v CS, 6 CH, —0.238

44 » CS, v CH, 0.370

45 v CS, 6§ CCS 0.364

46 v C(3)C(8), 6 CH, —0.197

47 v C(3)C(8), v CH, —0.198

48 v skel, § CH 0.254

49 v SN, 6§ SNO 0.500*

50 v NO, 6 SNO 0.500*

ay,, antisym. str.; »,, sym. str.; 8,, antisym. bend; é,, sym. bend; p, rock-
ing; v, wagging; 7, torsion; t, twisting.

b Atom numbering as in Fig. 2, ref. 3.

¢ Units: stretching, mdyn- % 1 bending and torsion, mdyn-A rad-3
stretch-stretch, mdyn-A- stretch bend, mdyn-rad~!; bend- bend
mdyn-A-rad-2

4 Transferred from amino acids (Ref. 3) except as follows: newly re-
fined values are given with starting value in parentheses; values with
asterisk are transferred from methyl thionitrite (Ref. 7).

e Estimated from the standard error in frequency parameters.

programs.’ The geometry of the molecule was assumed
to be that of L-cysteine!® for the amino acid part. Struc-
tural data for the CSNO skeleton were taken from
an X-ray study of the unusually stable thionitrite of
N-acetyl-D,L-penicillimine,’® as in previous studies on
methyl thionitrite.” Symmetry coordinates were con-
structed as previously described for L-cysteine.?
Zero-order calculations were carried out with 43 force
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Fi. 1. Fourier transform infrared spectra of S-nitrosocysteine (A)
and S-nitrosocysteine-*N (B), obtained by the KBr pellet technique.
(Frequency scale changes at 1800 cm™.)

constants transferred from the overlay calculations on
amino acids,® and seven from methyl thionitrite.” Sub-
sequently, force constants involving the NH, grouping,
the CH,, grouping, and the CSNO skeleton were refined,
and the average absolute frequency error was thereby
reduced from ca. 11 cm™ to ca. 7 cm™. The specific
reasons for choosing these particular force constants (11
out of 50) for a least-squares refinement are explained
in the next section.

RESULTS AND DISCUSSION

Force Constants. Table I lists the 50 force constants
used to calculate a total of 117 frequencies of the three
S-nitrosocysteine isotopomers. The force constants
transferred from the methyl thionitrite study’ are
marked with an asterisk. The remaining unrefined force
constants were transferred from overlay calculations on
amino acids.® The 11 refined constants are given along
with the error estimated from the standard error in fre-
quency parameters. The starting force constants are
given in parentheses in cases where refined values were
used for the final computations.

A few words should be said concerning the choice of
force constants which were refined: (a) The crystal
structures of the previously studied amino acids differ
from each other,® and the crystal structure for S-nitro-
socysteine is not known. Vibrational frequencies asso-
ciated with the strongly hydrogen-bonded NHj; groups
thus differ from one amino acid to another depending
on the particular scheme of hydrogen bonding in a given
crystal. NH, stretching and bending force constants [F(1)
to F(4)] were therefore chosen for refinement. (b) The
CH, group force constants depend to a degree, on the
atom next to the methylene group,? a sulfur atom in the
case of S-nitrosocysteine. The CH, bending, wagging,
twisting, and rocking force constants [F(10) to F(13)]
were, therefore, also refined. (¢) Finally, three force con-
stants associated with the SNO grouping, F(29) (NO



TABLE II. FT-IR spectra of S-nitrosocysteine and S-nitrosocysteine-N, 300-3200 cm~’ region.
1“N isotopomer 15N isotopomer Potential energy Approx.
v Avb ”» Av® distribution (PED)¢ descr.e
1 3140 5 3150 -5 1(99) »,NH,*
2 3140 5 3150 -5 1(99) v,NH,*&
3 3045 10 3046 9 2 (100) v,NH,
4 2982 14 2986 10 8 (100) v,CH,
5 (2981)f e (2981)f s 9 (100) v,CH,
6 2945 9 2939 15 15 (99) vCH
7 1610 9 1613 6 3 (90) 0,NH,* &
8 1610 5 1613 2 3(92) 6,NH,*¢
9 1587 1 1588 0 17 (108) »,COO~
10 1513 5 1512 6 4 (100) 5, NH,*+
11 1513 2 1487 0 29 (98) vNO
12 1422 2 1428 -4 10 (42), 24 (18), 16 (15) cee
13 1406 —4 1404 -2 10 (56), 24 (15), 16 (13) 6CH,
14 1355 0 1355 0 16 (65), 23 (12), 25 (12) 6CCH; 6NCH
15 1343 —-19 1344 —20 16 (28), 12 (27), 18 (23) e
16 1298 3 1299 1 11 (83), 23 (15) yCH,
17 1255 9 1256 8 12 (50), 18 (40) tCH,
18 1194 -12 1195 -13 16 (26), 5 (22), 18 (10) e
19 1148 -2 1148 -2 6 (48), 5 (14), 11 (10) o, NH,*
20 1102 -1 1101 2 25 (21), 5 (18), 12 (11) et
21 (1008)* (1008)f 5(21), 24 (19), 6 (16)
22 924 —4 924 —4 21 (14), 25 (14), 6 (13)
23 846 11 846 11 13 (28), 21 (19), 19 (14)
24 816 -10 816 -10 21 (34), 13 (30)
25 (722)f (722)* 30 (85), 45 (—14) vCS
26 643 -1 634 8 19 (52), 27 (15), 20 (14) 6CO0-
27 632 1 623 -3 35 (98), 36 (20), 49 (—28) »SN
28 536 -1 534 3 25 (28), 20 (27), 26 (13)
29 (490)* s (490)* s 7(73) 7NH,*
30 457 -7 455 -6 26 (23), 20 (16), 31 (13)
31 391 —4 389 —4 36 (62) 8SNO
32 342 14 (356)¢ B 28 (26), 19 (14), 14 (13) e

2 Observed frequency in cm™!.
b y(calc.) — v(observed).

¢ The first number designates the force constant; the second number (in parentheses), its percent PED.
4 The PED is given for the N isotopomer. The PED is very similar for the *N isotopomer.

¢ Symbols as in Table I.
f Calculated frequency. No IR band observed.
¢ Nearly degenerate mode (Type E for local C,, symmetry).

stretching), F(35) (SN stretching), and F(36) (SNO
bending) were refined because these three transferred
force constants were obtained on gaseous methyl thioni-
trite whereas the present study is concerned with crys-
talline S-nitrosocysteine. (Frequency shifts of 20 cm™
to 25 cm™ are observed for the NO stretching and SNO
bending modes of methyl thionitrite on going from the
vapor phase to the solid state.)

A total of 11 force constants (out of 50) were therefore
refined. The differences between the initial and final cal-
culated force constant values associated with the amino
acid residues are small, as seen in Table I. These changes
in value range from 0.6% for F(2) to 6% for F(13), with
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Fic. 2. Infrared spectrum of S-nitrosocysteine-N-d,. Halocarbon muil
35001300 cm~. Nujol' mull 1300-250 cm™.

an average deviation of 2.6%. For the SNO force con-
stants F(29), F(35), and F(36) the refinement yields final
values which differ from the initial ones by 2%, 10%,
and 16%, respectively. The largest difference is associ-
ated with the SNO bending force constant. All these
changes appear reasonable and indicate, in general, a
good transferability of the previously obtained values.
(The only exception is the SNO bending constant which
appears to change noticeably when comparing the gas-
eous to the solid state.) Transferability of the seven force
constants giving rise to vibrations below ca. 250 cm™!
[F(14, 22, 27, 31-34)], i.e., constants associated with low
frequency bending and torsional modes, could not be
ascertained because no low frequency data were avail-
able. (The limit was ~250 cm™! for the N-d, isotopomer
and ~380 cm™! for the other two isotopomers. Raman
spectra could not be obtained because of sample decom-
position even with the use of the red 6471 Angstrom line
of a krypton ion laser.)

Frequencies and Assignments. Figure 1 shows the Fou-
rier transform infrared spectra of the normal and the
5N isotopomer. The observed frequencies, errors of cal-
culation, and assignments according to the potential en-
ergy distribution'” (PED) are given in Table II. T'o avoid
confusion, only the three largest PED terms with con-



TABLE III. Infrared spectra of S-nitrosocysteine-N-d, from 300 to
3000 cm—.

Frequency
-1 )
__ET_)__ Potential energy Approx.
Obs. Calc. distribution (PED)* descr.c

1 2991 2996 8 (100) »,CH,

2 2981 2981 9 (100) v,CH,

3 2954 2954 15 (99) vCH

4 (~2360)> 2333  1(98) v ND,*¢

5 (~2360) 2332 1(98) v, ND,*d

6 2220 2193 2 (99) vy ND,*

7 1587 1588 17 (109), 40 (—27), 20 (13) »,COO-

8 1517 1515 29 (98) vNO

9 1412 1418 10 (71), 24 (10) 6CH,
10 1393 1396 24 (27), 10 (27), 16 (24) s
11 1360 1356 16 (67), 23 (12), 48 (—11) 6CCH; 6NCH
12 1338 1323 16 (30), 12 (27), 18 (20) e
13 1297 1298 11 (86), 23 (18) vCH,
14 1250 1263 12 (50), 18 (38), 16 (10) tCH,
15 1183 1174 3(26), 4 (19), 25 (14) e
16 1174 1161 3(93) 3, ND,*
17 1174 1155 3 (65), 4 (19) §,ND,*+4
18 1150 1137 4 (59), 16 (10) 6,ND,*+
19 1079 1062 18 (15), 24 (13), 25 (13)
20 1029 1020 6 (15), 5 (10)
21 857 859 13 (30), 21 (24), 14 (10)
22 823 836 5 (56), 19 (21), 24 (11) py NDg+
23 808  23(18),21(18),6(17)
24 795 787 6 (45), 21 (21), 13 (13) p,ND;*
25 718 30 (86), 45 (—14) vCS

26 629 631

35 (99), 36 (19), 49 (—28) »SN
27 605 614 19 (47), 20 (15), 38 (—21) 6COO-
28 518 513  20(31), 25(29), 19 (15)
29 444 441 36 (26), 26 (23), 31 (17) e
30 370 385 36 (46), 26 (11) o6SNO
31 355  28(20), 7(17), 19 (12)
32 335 346 7 (66) 7ND,*

a The first number designates the force constant, the second (in pa-
rentheses), the percent PED.

b Very weak shoulder. Not used in refinement.

¢ Symbols as in Table 1.

4 Nearly degenerate mode (Type E for local C;, symmetry).

tributions higher than 10% are listed. An approximate
group frequency description is given if one term con-
tributes more than ca. 45% to the potential energy, as
in previous related work.3” Figure 2 gives the infrared
spectrum of the N-d; isotopomer, and Table III supplies
the corresponding frequency data and assignments. Be-
cause the calculation errors are somewhat larger for this
molecule than for the other two isotopomers, both ob-
served and calculated frequencies are explicitly given.
The overall frequency error, as stated before, is ~7 cm™!
or 0.7%, which appears satisfactory considering the large
number of transferred force constants and the very small
adjustments in the 11 constants refined.

Assignments for the high frequency NH;, ND;, CH,,
and CH stretching modes must be regarded as approx-
imate. In the case of the protonated isotopomers, NH
and CH stretching modes overlap as in all amino
acids.’-® This entire spectral region is further distorted

by very strong Fermi resonance, rendering the deter-
mination of precise fundamental frequencies very diffi-
cult. The overlap is eliminated in the N-d; isotopomer,
but obvious Fermi resonance distortion is now observed
in the ND, stretching region, around 2000-2400 cm™1,
as well as in the CH stretching region around 3000 cm ™.
Only one obvious CH, stretching band is observed for
each isotopomer. This band is assigned to the CH, asym-
metric stretching vibration in analogy with earlier stud-
ies on the amino acids cysteine®'® and serine.®® An at-
tempt to describe all modes of a molecule as complex as
S-nitrosocysteine as localized group vibrations would not
be meaningful. The vibrations above ca. 1500 cm™ can,
nevertheless, be so designated in all three isotopomers,
as seen in the PED column of Tables II and III. (More
than 90% of the potential energy is associated with a
single force constant.) Of the lower frequency modes a
considerable number can also be called group vibrations
by the PED criterion. Such a designation holds primar-
ily for XH deformation modes where X is a nitrogen or
a carbon atom. The CS, SN, and NO stretching modes
and the asymmetric COO~ stretching vibration can also
be called local group vibrations. The CC or CN stretch-
ing modes, and the symmetric COO~ stretching vibra-
tion, cannot be so designated. Attempts to interpret the
vibrational spectra of molecules of this size entirely by
a group frequency approach are obviously unjustified
oversimplifications. Characteristic group force con-
stants, on the other hand, if based on a broad enough
selection of molecules treated by overlay calculations,
appear to retain their validity for a considerable variety
of structurally related molecules.
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