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Cloning, expression and characterization of a cDNA encoding a lipase from Rhizopus delemar

Michael J. Haas?, John Allen® and Thomas R. Berka?®

SUMMARY

A Jgtl11 cDNA library was constructed in Escherichia coli using poly(A)-selected mRNA from the fungus, Rhizopus (Rp.)
delemar. Lipase-producing members of the library were identified by means of a phenotypic score wherein the release of fatty
acids by lipase causes a characteristic color change in the growth medium. One such isolate contained a 1287-bp insert (LIP
c¢DNA) which hybridizes to 1.25- to 1.35-kb mRNA species from Rp. delemar. The lipase produced in E. coli containing the
LIP cDNA exhibits the same substrate selectivity as the authentic fungal enzyme, hydrolyzing ester bonds at the stereospecific
numbering (sn) sn-1 and sn-3, but not the sn-2, positions of triglycerides. The complete nucleotide sequence of the LIP cDNA

. was determined. By reference to the N-terminal sequence of authentic Rp. delemar lipase, the lipase-encoding region was
identified within this fragment. The LIP cDNA encodes a putative preprolipase consisting of a 26-amino-acid(aa) signal
sequence, a 97-aa propeptide, and a 269-aa mature enzyme. The predicted mature lipase has the same molecular weight and
aa composition as that of Rp. delemar, is highly homologous to that produced by the fungus Rhizomucor miehei, and contains
the consensus pentapeptide (Gly-Xaa-Ser-Yaa-Gly) which is conserved among lipolytic enzymes. It is concluded that the
LIP cDNA is an essentially full-length analogue of the lipase-encoding gene of Rp. delemar. The lipase encoded by the LIP
cDNA occupies a cytoplasmic location when synthesized in E. coli. Unprocessed forms of the lipase accumulate in E. coli.

INTRODUCTION

Triglycerides represent a rich source of reduced carbon
and energy to living organisms. Their metabolism is initi-
ated by enzymatic hydrolysis of their ester bonds. These
reactions are catalyzed by lipases (acylglycerol acyl-

Abbreviations : aa, amino acid(s); Ap, ampicillin; bp, base pair(s); IPTG,
isopropyl-g-D-thiogalactopyranoside; kb, kilobase(s) or 1000 bp; LIP,
gene (DNA) encoding lipase; nt, nucleotide(s); ORF, open reading frame;
PAGE, polyacrylamide-gel electrophoresis; Rm., Rhizomucor; Rp.,
Rhizopus; SDS, sodium dodecyl sulfate; sn, stereospecific numbering;
Xaa, any aa; [ ], denotes plasmid-carrier state.

hydrolases, EC 3.1.1.3) (Brockerhoff and Jensen, 1974;
Borgstrom and Brockman, 1984).

Due to their pivotal roles in fat metabolism, there is
considerable interest in the biochemistry and molecular
biology of lipases (Mickel et al., 1989; Kirchgessner et al.,
1989). There is also substantial interest in the biotech-
nological applications of these enzymes. Lipases catalyze
the synthesis and hydrolysis not only of glycerides but also
of a variety of ester and ester-like bonds (Margolin and
Klibanov, 1987; Langrand et al., 1988; Posorske et al.,
1988; Sztajer and Zboinska, 1988; Nishio et al., 1989).

Fungal and bacterial lipases are usually employed in
these applications. The extracellular lipases of the fungus
Rp. delemar, a member of the Class Zygomycetes, have
been shown to catalyze a variety of reactions involving the
synthesis and hydrolysis of esters (Okumura et al., 1979;



Macrae, 1983; Yagi et al., 1990). Several factors, such as
limitations in supply, stability and specificity, hinder the
fuller utilization of lipases such as this one in applied cataly-
sis. To characterize the lipase gene from this organism, and
to facilitate its high level;expression and further modifica-
tion, we have isolated and characterized an expressed
Rp. delemar lipase cDNA.

RESULTS AND DISCUSSION

(a) cDNA library construction and recovery of lipase-
producing clones

Rp. delemar ATCC34612 (American Type Culture Col-
lection, Rockville, MD) was grown at 30°C from a spore
inoculum in minimal salts medium (Westergaard and
Mitchell, 1947) fortified with 0.5% casamino acids
(Difco)/30 mM glycerol/5 ng biotin per ml. Total RNA was
isolated from 5 gof 40-h mycelia using a guanidinium/CsCl
protocol (Maniatis et al., 1982). Poly(A)* RNA isolated by
affinity chromatography on oligo(dT)-cellulose (Pharmacia,
Piscataway, NJ) (Maniatis et al., 1982) served as the tem-
plate for cDNA synthesis, using an oligo(dT) primer and
reverse transcriptase (Bethesda Research Laboratories,
Gaithersburg, MD). Internal EcoRI sites in the product
were blocked with M - EcoRI methyltransferase, and EcoRI
linkers (New England Biolabs, Beverly, MA) were added
by ligation. The product was cut with EcoRI (Bethesda
Research Laboratories, Gaithersburg, MD), ligated to
Agtll arms, and packaged in vitro using Packagene extracts
(Promega, Madison, WI). E.coli Y1090r~ (Promega,
Madison, WI) was infected with the resulting phage and
plated in top agar containing a lipase indicator medium
consisting of an emulsion of rhodamine B and olive oil
(Kouter and Jaeger, 1987). Phage replication was tem-
perature-induced in the presence of 10 mM IPTG. Follow-
ing overnight incubation at 37°C, lipase-positive plaques
(bright pink under ultraviolet light) were identified at a
frequency of 10 ~>. E. coli 1089r ~ (Promega, Madison, WI)
was lysogenized with R45A4, a lipase-encoding phage
identified in this manner.

Phage R45A4 contains a single EcoRI insert, estimated
by electrophoresis to be 1.3 kb in size. The expression
plasmid, pUCS8-2.14, was derived by cloning this fragment
into the EcoRI site of pUC8-2, a derivative of pUCS (Vieira
and Messing, 1982) in which inserts are under the control
of the lacZpo promoter, and expressed in the same frame as
fragments inserted in the EcoRI site of Agt11 (Hanna et al.,
1984). Plasmid pUC8-2.14 was introduced into E. coli
JM101 by transformation (Hanahan, 1983) and Lip*
transformants were identified on lipase indicator media
containing Ap. Lipase activity was detectable only in cells
harboring pUC8-2.14, and only upon induction with IPTG.

Thus, the LIP cDNA is necessary and sufficient for the
synthesis of lipase by E. coli IM101[pUC8-2.14], and this
synthesis is regulated by IPTG.

(b) Northern-blot analysis of LIP RNA

Poly(A)* RNA from Rp. delemar was electrophoresed
on agarose gels, transferred to a nitrocellulose membrane,
and hybridized with radiolabeled LIP ¢cDNA (Fig. 1)
(Davis etal.,, 1986). The probe hybridized primarily to
fungal RNAs approx. 1.25-1.55kb in size (Fig. 1). This
establishes that the LIP cDNA has homology to
Rp. delemar poly(A)* RNA, and is large enough to be a
full-length analogue of the fungal lipase mRNA.

(c) Nucleotide sequence determination
Three contiguous, nonoverlapping, restriction fragments
which comprise the entire LIP cDNA (EcoRI-Kpnl, Kpnl-

Fig. 1. Northern-blot analysis of LIP RNA. Poly(A)*RNA from
Rp. delemar was fractionated on 1Y%, agarose-0.66 M formaldehyde gels
(Davis et al., 1986), along with marker preparations of 0.16-1.77 kb and
0.24-9.5 kb RNA ladders (Bethesda Research Laboratories, Gaithers-
burg, MD). After staining with ethidium bromide to visualize bands, the
nucleic acids were transferred to nitrocellulose (Davis et al., 1986). Fil-
ters were prehybridized overnight at 42°C in 509, formamide/S x
Denhardts solution (per liter: 1 g polyvinylpyrrolidone/l g bovine
serum albumin/l g Ficoll 400)/5 x SSPE (0.75 M NaCl/0.05 M
NaH,P0,/0.005 M EDTA-Na, pH 7.4)/0.1%, SDS/100 ug per ml shear-
ed, heat-denatured herring sperm DNA. Radiolabeled probe was then
added and hybridizations were conducted for 18 h at 42°C. The mem-
branes were washed twice in 0.2 x SSPE/0.01%, SDS, followed by auto-
radiography. The numbers indicate the sizes of the marker fragments
in kb.



HindlIll, and HindIII-EcoRI), were isolated by electro-
phoresis-electroelution and subcloned in both orientations
in phage M13mp18 and 19 (Yanisch-Perron et al., 1985).
The Sau3Al sub-fragments of the EcoRI-KpnlI region, and
the Rsal sub-fragments of the HindIII-EcoRI region were
similarly subcloned. Nucleotide sequences were determined
by the dideoxy method employing either Klenow enzyme
(Sanger et al., 1977) or T7 polymerase (Sequenase, USB,
Cleveland, OH, nt 145-243, 452-566, and the final 200
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3’-proximal nt), using synthetic oligodeoxynucleotide prim-
ers. Sequence analysis was performed with PC/GENE soft-
ware (IntelliGenetics, Mountain View, CA).

The sequence of the LIP cDNA is shown in Fig. 2. It is
1287 bp in length and has a G+ C content of 45%,. A
polyadenylation consensus sequence lies at nt 1253-1258
(Birnstiel, 1985). Only one reading frame has an ORF suf-
ficient in length to encode the Rp. delemar lipase, which is
composed of a single polypeptide with a mass of 30.3 kDa
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Fig. 2. Nucleotide sequence of the mRNA-like strand of LIP cDNA, and the deduced aa sequence from the most probable start codon in the only ORF
sufficiently long to encode lipase. The proposed sites of proteolytic removal of the signal sequence, between Ala =% and Val =7, and of the propeptide,
between Ala~ ! and Ser * ! are indicated by blackened arrowheads. The consensus lipase pentapeptide at aa 143-147 is underlined. A consensus sequence
signalling poly(A)-addition, at nt 1253-1258, is double underlined. GenBank accession No. M38352.



(M.J.H. and D. Cichowicz, in preparation). Within the first
110 bp of the sequence there are three Met codons. The one
at nt 46-48 is most likely the start codon (Kozak, 1984). A
translation terminator lies at nt 1222-1224 and is followed
by 63 untranslated nt.

The protein encoded between the probable start and stop
codons contains 392 aa and has a mass of 42.1 kDa. The
N terminus of this putative protein contains a typical signal
peptide. Proteolytic cleavage to remove this signal is most
likely to occur between Ala®® and Val?” (von Heijne, 1986).

Removal of the signal sequence would leave a protein
with 366 aa and a mass of 39.5 kDa. This is substantially
larger than the Rp. delemar lipase, implying that the enzyme
is initially synthesized as a larger precursor. To identify the
position of the mature lipase within this precursor, the aa
sequence predicted from the LIP cDNA was compared
with the N-terminal sequence of authentic Rp. delemar
lipase (M.J.H. and D. Cichowicz, in preparation). A
sequence identical to the N-terminal 28 aa residues of the
fungal lipase is encoded downstream from nt 415 in the LIP
cDNA (Fig. 2). Proteolytic cleavage of a proenzyme just
before the Ser residue (encoded by nt 415-417) would
generate a mature lipase with a mass of 29.6 kDa, in agree-
ment with that of authentic lipase. The aa composition of
the predicted mature lipase agrees with that of the authentic
fungal enzyme (Table I). These results indicate that the
lipase is synthesized as a preproenzyme containing a 26-aa
signal peptide and a 97-aa propeptide.

One highly conserved region, with the consensus se-
quence Gly-Xaa-Ser-Yaa-Gly where Xaa is often His, has
been identified in all lipases examined to date (Brenner,
1988; Antonian, 1988). This region has been variously
implicated in the binding of lipases to micellar substrates
(Guidoni et al., 1981) or as the location of an active site Ser
(Brady et al., 1990). A sequence (Gly-His-Ser-Leu-Gly)
homologous to this consensus site is encoded by the LIP
cDNA between nt 841-855. With the exception of the lipase
of the fungus Rm. miehei (below), the enzyme shows no
significant homology to other lipases whose sequences are
known.

The 6102 entries of the SWISS-PROT protein data base
(release 6.0) were scanned for homology with the predicted
aa sequence of the mature lipase. Other than homologies
with the consensus sequences of other lipases, the
Rp. delemar enzyme exhibits no homologies greater than a
pentapeptide.

The predicted lipase is substantially homologous to the
lipase of Rm. miehei, another member of the Class Zygo-
mycetes (Boel et al., 1988). The Rm. miehei enzyme exhibits
the same positional selectivity toward triglyceride sub-
strates as the Rp. delemar enzyme: both enzymes hydrolyze
esters at the sn-1 and sn-3, but not the sn-2, positions of
glycerides. The organizational and sequence homologies

TABLE 1

The aa compositions of mature Rhizopus delemar lipase®

aa Predicted® Determined®
Ala 15 19
Arg 9 10
Asn 10
Asp 13 } 2
Cys 6 8
Gln 13
Glu 9 } 24
Gly 21 21
His 7 8
Ile 17 14
Leu 16 17
Lys 15 18
Met 1 2
Phe 15 14
Pro 15 16
Ser 24 22
Thr 22 21
Trp 3 N.D.
Tyr 12 11
Val 26 19
Total 269

2 Expressed as number of aa residues per lipase molecule.

® From nt sequence of the LIP ¢cDNA (see Fig. 2). For aa + 1-+ 269.
¢ Samples of pure lipase were incubated at 110°C for 24 hin 5.7 N HCL.
Amino acid contents of the resulting hydrolysates were determined on a
Beckman 119CL amino acid analyzer according to the manufacturer’s
instructions (M.J.H. and D. Cichowicz, unpublished). N.D., not deter-
mined.

between the cDNAs encoding these enzymes are con-
siderable. Their coding portions are 56%, identical overall.
The degrees of identity within the regions encoding the
signal, propeptide and mature lipase regions are 47%,, 53%,
and 599, respectively, at the DNA level and, considering
both identical and functionally identical aa, the predicted aa
sequences are 299, and 689, homologous in the pre/pro
and mature domains.

The predicted mature lipases from both organisms
contain 269 aa. Maximum alignment is obtained by the
introduction of only one gap, a single aa long, in each
(Fig. 3). In the C-terminal halves of the enzymes, beginning
at Pro'37 in the Rp. delemar lipase and including the lipase
consensus sequence, the sequence conservation is substan-
tially greater. Sixty-seven percent of the aa in this region are
identical, and an additional 9%, are functionally similar.
The mature Rp. delemar lipase contains two potential Asn-
glycosylation sites, at Asn®® and Asn'%®. Only the latter is
also found in the Rm. miehei enzyme.

The three dimensional structure of the Rm. miehei lipase
has recently been reported (Brady et al., 1990). Key features
of that structure appear to be conserved in the Rp. delemar



Rd- SDGGKVVAATTAQIQEFTKYAGIAATAYCRSVVPGNKWDCVQCQKWVPDG 50

Rm- SIDGGIRAATSQEINELTYYTTLSANSYCRTVIPGATWDCIHCDA TEDL 49

Rd- KIITTFTSLLSDTNGYVLRSDKQKTIYLVFRGTNSFRSAITDIVFNFSDY 100

Rm- KlIKTWbTLIYDTNRMVARGDSEKTIYIVFRGSSSIRNWIADLTFVPVSY 99

Rd- KPVKGARVHAGFLSQYEQVVNDYFPVVQEQLTAHPTYKVIVTGHSLGGAQ 150

Rm- PPVSGTKVHKGFLDSYGEVQNELVATVLDQFKQYPSYKVAVTGHSLGGAT 149

Rd- ALLAGMDLYQREPRLSPKNLSIFTVGGPRVGNPTFAYYVESTGIPFQRTV 200

Rm- ALLCALGLYQREEGLSSSNLFLYTQGQPRVGDPAFANYVVSTGIP{RRTV 199

Rd- HKRDIVPHVPPQSFGFLHPGVESWIK SGTSNVQICTSEIETKDCSNSIV 249

Rm- NERDIVPHLPPAAFGFLHAGEBYWITDNSPETVQVCTSDLETSDCSNSIV 249
Rd- PFTSILDHLSYFDINEGSCL 269

Rm- PFTSVLDHLSYFGINTGLCT 269

Identity : 151 ( 56.1%)
Similarity: 33 ( 12.3%)
Number of gaps inserted in Rd: 1
Number of gaps inserted in Rm: 1

Fig. 3. Alignment of the aa sequences of the mature lipases of Rp. delemar
(Rd), determined from the LIP cDNA sequence, and of Rm. miehei (Rm)
(Boel et al., 1988). Alignment was performed by the method of Myers and
Miller (1988) with open gap and unit gap costs of 50. Identical aa are
marked by colons; similar aa are connected by dots. The groups of similar
aa are A,S,T; D,E; N,Q; RK; LLM,V; FY,W.

enzyme. These include the catalytic triad, S144, D203 and
H257, the extended loop (85-97) and the pattern of disul-
fide bonds (C29/268, C40/43, C239/249).

(d) Characterization of the lipase encoded by the LIP
cDNA

Lipolytic activity was quantitated with a continuous
titrating pH-stat method (Junge, 1984). A unit of activity is
that amount which releases one pmole of free fatty acid
from emulsified olive oil per min at 26°C, pH 7.5.

The subcellular location of the Rp. delemar lipase when
synthesized by E. coli was determined by fractionating the
cells and determining the level of lipase in each fraction.
E. coli IM101[pUCS8-2.14] was grown to late logarithmic

TABLE 11

phase in the presence of IPTG. The cells were harvested
and subjected to osmotic shock to release periplasmic con-
stituents. The cells were recovered and broken by soni-
cation, releasing soluble cytoplasmic contents. Particulate
material, containing membrane-bound and insoluble cell
components, was recovered by centrifugation. Lipase activ-
ities were determined in the resulting fractions, and in the
spent growth medium. To monitor the efficiency of fractio-
nation of the cells, the levels of alkaline phosphatase, a
periplasmic marker (Heppel, 1971), and lactate dehydro-
genase, a cytoplasmic marker (Mahler and Cordes, 1971)
in these fractions were also determined. A high degree of
separation of marker enzymes was obtained, indicating that
the subcellular fractions were well separated (Table II). Of
the recovered lipase activity, 689, was in the cytoplasmic
fraction, with an additional 329 in the particulate fraction
(Table II). This latter activity may be membrane bound or
in the form of inclusion bodies. No detectable lipase was
present in the periplasmic fraction or in spent growth
medium (Table IT). Therefore, the lipase occupies a cyto-
plasmic location in E. coli.

Induction of LIP gene expression in E. coli
IJM101[pUC8-2.14] did not cause a detectable change in
the protein complement of the cells, as monitored by
SDS-PAGE (Fig. 4A). The appearance of lipase cross-
reacting material upon induction was detected, however, by
immunoblotting with polyclonal antibodies raised against
purified Rp. delemar lipase (Fig. 4B). The cross-reacting
species were of 45.0, 41.2, 39.3 and 34.4 kDa. The first of
these sizes corresponds to that predicted for the unprocess-
ed protein resulting from initiation at a vector Met codon.
The second corresponds to initiation at a Met codon within
the cDNA (Fig. 2, nt 46—48). The third corresponds to the
size predicted for prolipase. No material with a mass of
30 kDa, the size of mature lipase, was detected. Thus,
E. coliis unable to fully process the initial LIP gene product

Activities of selected enzymes in subcellular fractions of E. coli IM101[pUC8-2.14]

Preparation® Total enzyme activity units and ¥, distribution (in parentheses, below)
Lipase® Alkaline phosphatase® Lactate dehydrogenase®
Supernatant, post-osmotic shock 0 3.8x 1071 (93) 0
Sonicated, post-shock cells 28.6 (68) 2.5x 1072 (6) 1.05 (89)
Debris following sonication and shock 13.3 (32) 32x 1073 (1) 1.25 x 10~ (11)

a Cells grown to mid-log phase in 500 ml of low phosphate media (Inouye et al., 1981) containing 1 mM IPTG and 100 ug Ap/ml were subjected to osmotic
shock (Haas and Dowding, 1975). The shocked cells were resuspended in 4 ml of 10 mM Tris - Cl, pH 8.0, and sonicated. Cellular debris was removed
by centrifugation at 38000 x g for 15 min. The debris pellet was resuspended in 4 ml 10 mM Tris - Cl, pH 8.0.

® Determined as described in section d.
¢ Determined as described by Garen and Levinthal (1960).

d Determined according to the 1982 Worthington Enzyme Catalog (diaphorase assay) and the instructions accompanying kit LDH 228-UV (Sigma

Chemical Co., St. Louis, MO).
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Fig. 4. Electrophoretic and immunological characterization of the products of /ijp gene expression in E. coli IM101[pUC8-2.14]. Extracts of mid-log phase
cells, prepared by sonication, were resolved by 0.19, SDS-12%, PAGE. The method of Winston et al. (1987) was used to detect lipase immunologically.
Following SDS—-PAGE, proteins were electrophoretically transferred to nitrocellulose sheets, and treated with polyclonal rabbit antibodies raised against
purified Rp. delemar lipase. The membranes were then treated with alkaline phosphatase-conjugated Staphylococcus aureus Protein A (Sigma Chemical
Co., St. Louis, MO). Sites of immunological cross-reaction were visualized by incubating the membranes with nitroblue tetrazolium and 5-bromo-4-chloro-
3-indolyl phosphate (Sigma, St. Louis, MO). (Panel A) Silver stained gel (Morrissey, 1981); lanes: a, 1.5 ug mixed M, standards (Sigma, St. Louis, MO),
b, 5.6 ug protein from induced E. coli IM101[pUC8-2.14], ¢, 3.8 ug protein from uninduced E. coli IM101[pUC8-2.14], d, 1 ug pure Rp. delemar lipase,
e, 2.2 ug mixed M, standards. (Panel B) Immunoblots; lanes: a, 5.6 ug protein from induced E. coli JIM101[pUC8-2.14], b, 5.6 ug protein from uninduced

E. coli IM101[pUCS8.2-14], ¢, 60 ng pure Rp. delemar lipase.

to its final mature form. Small amounts of cross reacting
material with these same masses were detected in uninduced
cells (Fig. 4B).

To determine the positional selectivity of the lipase, soni-
cates of E. coli harboring and expressing the LIP cDNA
were incubated at room temperature with triolein. Before
hydrolysis had reached 109, of maximum, the glyceride
composition of the reaction products was determined by
thin layer chromatography on silica gel plates (Bilyk et al.,
1991). The diglyceride population contained 1,2 (2,3) and
no 1,3 diglycerides. Thus, the product of the LIP cDNA
specifically hydrolyzes primary, and not secondary fatty
acyl esters. This is the same specificity displayed by authen-
tic Rp. delemar lipase, consistent with the conclusion that
the LIP cDNA was derived from an Rp. delemar LIP gene.

(e) Conclusions

(1) cDNA encoding a lipase produced by Rp. delemar
has been cloned and the product expressed intracellularly
in E. coli.

(2) The LIP cDNA encodes a predicted 392-aa
preproenzyme consisting of a 26-aa signal sequence, a
97-aa propeptide and a 269-aa mature lipase. The mature

enzyme contains the highly conserved lipase consensus
pentapeptide and exhibits 569, sequence identity with the
lipase produced by Rm. miehei, providing evidence for
lipase gene families in the lower eukaryotes. No homology
to other lipases could be detected.

(3) Forms of lipase corresponding to the prepro- and
pro-enzymes, to the product of initiation at a vector methio-
nine codon, and to a species intermediate in size to those
of preprolipase and the mature enzyme, are found in E. coli
JM101[pUC8-2.14]. The mature form of the lipase does
not accumulate.
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