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Chapter 24

Predictive Microbiology
Mathematical Modeling of Microbial Growth in Foods

One of the basic precepts of modern food microbiology is that the growth of
microorganisms is a function of the food as an environment. The species most capable
of dealing with the environment that a particular food represents will thrive and
predominate. Each environment can be considered the inte gration of a finite number
of factors that influence a microorganism’s physiological responses. Theoretically,
the large number of factors that influence the growth of bacteria in foods could be
quantified so that specific information on the growth characteristics of individual
foodborne microorganisms would be available for each food. However, consideration
of the thousands of different foods eaten worldwide and the high level of biological
variation within single foods quickly leads to the realization that sucha goal is virtually
impossible. Luckily, in most foods the number of factors that are the primary
determinants of growth for foodborne microorganisms is limited. If microorganisms’
responses to these variables could be derived, their behavior in foods could be
estimated. This is the underlying goal of predictive microbiology, a rapidly growing
subdiscipline of food microbiology. This includes a primary objective of overcoming
the need for an infinite amount of data by determining quantitative relationships
between microbial growth or survival and identified primary determinants. The
general approach involves the acquisition of data derived under controlled conditions
and the use of that information to establish mathematical relationships that can depict
the effects and interactions of the variables. The mathematical models derived can
then be used to predict how microorganisms are likely to behave in a range of foods
based on physical measurements of the primary determinants.

Historical

Most successful research on modeling the effects of multiple variables on the growth
or survival of foodborne microorganisms has been achieved during the past decade,
particularly the development of models related to the growth of pathogenic bacteria.
There are a number of reasons for this recent burst of activity, not the least of which
is the ready availability of increasingly sophisticated personal computers. However,



attempts to understand and mathematically describe the interactions of various factors
have been made throughout the history of microbiology. Much of the early work with
microbiological modeling had an emphasis that was not pertinent to conditions
associated with foods. There has been extensive modeling of conditions that occur
during various industrial fermentations, including the development of a body of
equations, such as those introduced by Monad (1), that describe the impact of variables
on yield. Fermentation models seldom considered many of the variables of concern
with foodborne microorganisms. Further, these models assume a nutrient-limited
system that has already reached stationary phase or a steady state, a condition not
generally pertinent to the growth of bacteria in food matrices.

The acquisition of data for elucidating the interactions of multiple variables
associated with food systems has been underway for several decades, particularly in
relation to the determining how the activity of antimicrobials is affected by other
parameters. Research characterizing the effectiveness of nitrite in model and cured
meat systems was an area of early emphasis due to interest in controlling nitrosamine
formation without loss of antibotulinal activity. Nitrite’s antimicrobial activity is
dependent on its interaction with temperature, pH, water activity, oxygen availability,
iron content, etc., and accordingly required the consideration of multiple variables (2-
7). Studies of this type provided an understanding of the relative importance of
multiple variables, and demonstrated the desirability of modeling techniques. For
example, in one of the early applications of response surface analysis techniques to
food microbiology, Schroder and Busta (8) demonstrated that only four of sixteen
ingredients in a soy-based ground meat analog had a significant impact on the growth
of Clostridium perfringens. However, little of this earlier research extended beyond
limited research applications due to a lack of sufficient databases or effective
modeling techniques. Farber (9) has provided an excellent review of the various
modeling approaches that were investigated during that period.

The various models that have been developed to describe the growth of foodborne
bacteria can be subdivided into two major approaches: probability-based models and
kinetics-based models. The choice of approach is largely dependent on the type of
bacterium being considered and the impact of growth on the safety of the product.
Probability-based models have been usually employed with endospore forming
bacteria, particularly Clostridium botulinum, where any growth is considered hazard-
ous. Kinetics-based models have been employed more often with non-endospore
forming pathogens, particularly those where the microorganism is not considered
hazardous until there has been some degree of growth.

Probability-Based Models

Much of the work on probability-based models is similar to that pioneered by
Hauschild (10) who attempted to estimate the probability that a single spore of
C. botulinum would germinate and produce toxin in a food. This approach takes into
account the strong effect that cultural conditions have on the germination of bacterial
spores. For example, Montville (11) reported that almost all C. botulinum spores
germinated in a medium with 0% added NaCl and a pH of 7.0, whereas only 1 in



100,000 spores germinated when the salt level was 2% and the pH was 5.5. If the
number of spores in a product is low and conditions for germination are non-optimal,
the probability that a population of spores includes one that is capable of initiating
growth has a large impact on any model for predicting product safety. Other
investigators (12-18) have systematically estimated the effects and interactions of
various variables on the probability of germination, outgrowth, and toxigenesis of
C. botulinum. Various forms of regression analysis have been used to model the
individual contributionsof the variables, providing a series of mathematical expressions
that could be used to predict the bacterium behavior in foods. For example,
Genigeorgis et al. (17) modeled the effects of temperature, inoculum size, and % brine
on the lag time to toxigenesis (which includes time for sufficient growth to yield toxin
formation) for non-proteolytic C. botulinum types B and E in cooked turkey, deriving
the relationship

Log,LP = 0.625 + 6.710(1/T) + 0.0005(I*T) - 0.033(T) + 0.102(B) - 0.102(I)

where, LP =Lag to toxigenesis; T = temperature; I =inoculum size; and B = % Brine.

This model achieved an acceptable degree of agreement between predicted and
observed values (Table 1), though the authors concluded that a larger database was
necessary for enhanced confidence levels. ’

The limiting factor for probability based models has been their adaptation for use
by non-research personnel. One of the key questions is whatis a realistic probability
of failure that one should be willing to accept, particularly in relation to potentially
fatal intoxications suchas those that could occur with C. botulinum. Otherissuesinclude
the level of spores that one could anticipate in products, and translation of the
probabilities into values that can be used to set the safe shelflife of a product. This
latter question is increasingly being addressed using an integration of probability- and
kinetics-based models similar to that employed by Genigeorgis et al. (17) which ad-
dressed both the probability of germination and the time to achieve sufficient growth
to yield toxin formation.

Kinetics-Based Mddels

The second major class of models depict the effects of cultural parameters on the
growth kinetics of a microorganism, particularly its lag and exponential growth
phases. The complexity of the models have varied with the complexity of target food
system. Although a variety of factors can influence the growth kinetics of foodborne
pathogens, in many instances growth is overwhelmingly dependent on a single prime
determinant. For example, the primary determinant of microbial growth in a highly
homogenous food such as fluid milk is temperature.

Various models have been developed to depict the effect of incubation temperature on
exponential growth rates and/or lag phase durations including the “square root” (19,
20), “linear Arrhenius” (21, 22), and “non-linear Arrhenius” (23-25) models. The
“square root” model has been studied extensively , particularly for refrigerated foods.



Table 1. Comparison of representative predicted versus observed “lag to
toxigenesis” for cooked turkey inoculated with spores of
Clostridium botulinum

Lag to Toxigenesis (days)
Temp (°C) Inoculum
(Log cfulg) % Brine Observed Predicted

30 3 0 0.5 0.3

1 0 0.5 0.5

2 1.5 0.5 0.6
20 0 0 2.5 2

3 1.5 1.8 1.3

1 2.2 2.5 2.5
16 4 0 1 1.2

2 1.5 2 2.8

0 22 7 5.4
12 2 0 5 4

0 1.5 9 9

4 2.2 7 4
8 3 22 16 12

2 0 8 10

1 1.5 14 17
4 3 1.5 110 101

0 0 >180 149

4 22 120 95

Source: Based on the probability models of Genigeorgis et al., (16).



For the temperature range below a microorganism’s optimum, the relationship is
@05 = b(T - To)

- where 1 = growth rate constant, b = slope of the regression line, T = incubation
temperature in °K, and To = notational minimal growth temperature in °K. The latter
term is derived by extrapolating the regression line to zero (19). The function is very
easy to use once the linear relationship between growth rate and the square root
temperature function has been established. Above an organism’s optimum growth
temperature, its rate of growth declines, and a more complex equation is required (20).
This technique has been used successfully to describe the relationship between storage
temperature and the microbiological safety or quality of various refrigerated foods
(26-30), particularly dairy products. Using a large database depicting Lactobacillus
plantarum growth in a microbiological medium over a wide range of temperatures,
Zwietering et al. (31) assessed various models for describing the effect of temperature
on microbial growth. They concluded that two modifications of the Ratkowsky
equations were most effective for modeling growth rates and maximum population
densities, whereas a hyperbolic function was more effective for lag phase duration. An
integrated combination of the three equations was used in conjunction with the
Gompertz function to develop a model for predicting the organism’s growth curve
over its entire temperature range.

Several investigations have extended this approach to develop models describing
the combined effects of temperature and water activity (32). A modification of the
square root function was used to model the effect of cooling schedules on the potential
growth of C. perfringens in a meat product (33).

While the above models have been effective in relatively simple food systems,
attempts to model more complex systems that are dependent on the interaction of
multiple variables have generally used a polynomial or response surface analysis
approach (34-38). These approaches employed non-linear regression techniques to
generate “best-fit,” multidimensional response surface equations that describe the
effects and interactions of the variables. This approach to kinetics modeling has been
greatly enhanced by coupling it to model equations, such as the logistics and Gompertz
functions (35, 39), that can be used to depict growth curves mathematically . Used in
conjunction with curve fitting computer routines, these sigmoidal functions allow the
growth curve to be described mathematically as a series of coefficients. Forexample,
the Gompertz function describes a growth curve as four values

L(t) = A +CeeCBEM)

where, L(t) = Log count of bacteria at time (in hours) t; A = Asymptotic log count of
bacteria as time decreases indefinitely(i.e., initial level of bacteria); C = Asymptotic
amount of growth that occurs as t increases indefinitely (i.., number of log cycles of
growth); M = Time at which the absolute growth rate is maximal; and B = Relative
growth rate at M.



The Gompertz function has been the one most extensively used due to the combination
of itsrelative simplicity and overall effectiveness (39). Once sufficient databases have
generated, the coefficients (or suitable transformations of the coefficients) of the
sigmoidal functions are fitted against the independent variables using either quadratic
(36, 38) or cubic polynomial models (37) (Table 2). When effective models are
developed, the predicted values of the sigmoidal functions can be used to calculate
parameters such as predicted generation times, lag phase durations, or time to reach
a designated population density. Fits between predicted and observed values have
been satisfactory, providing reasonable estimates of an organism’s growth kinetics.
For example, a comparison of representative data from Gibson et al. (36), who
modeled the effects of temperature, pH and NaCl content on the growth of Salmonella
(Table 3), indicates that the model provides reasonable predictions of the
microorganism’s growth rate over a wide range of variable combinations. A similar
effectiveness was reported by Buchanan and Phillips (37) who modeled the effect of
temperature, pH, sodium chloride content, sodium nitrite concentration, and oxygen
availability on the growth kinetics of Listeria monocytogenes.

Most response surface models that have been released have been based on
experimental data generated in microbiological media (36-38), wherein variables could
be controlled rigorously. Although specific databases could be generated for indi-
vidual commodities, the media-derived, Gompertz-based response surface models
provide reasonable “first estimates™ of the behavior of foodborne pathogens in a
variety of food systems. This is demonstrated in Table 4 which compares predicted
values for L. monocytogenes (37) against reported values for different commodities.
The ability to use media-derived models to predict behavior in foods is an important
advantage considering the experimental effort required to acquire sufficient data to
generate accurate models when dealing with three or more variables.

Once developed, a key to the successful use of multi-variable models is reducing
the calculations to a “user-friendly” form. The USDA/ARS Microbial Food Safety
Research Unit (40) recently developed application computer software to demonstrate
the potential usefulness of predictive microbiological approaches. The program,
which automates the use of response surface models for Salmonella spp. (36),
L. monocytogenes (37), Staphylococcus aureus (Smith et al., in preparation),
Shigella flexneri (Zaika et al., in preparation), Aeromonas hydrophila (38), and
Escherichia coli O157:H7 (Buchanan et al., in preparation), has been distributed
widely to food microbiology laboratories in industry, government, and academia.
Similar applications software are being developed by researchers in Europe. The
development of computer programs of this type must be an integral part of predictive
microbiology.

Concluding Remarks

There is a great deal of excitement among researchers in predictive microbiology as
new techniques and findings appear almost weekly and as international teams of
scientists begin to share their knowledge and databases. It seems reasonable to predict
that the next five years will see the introduction of increasingly more comprehensive



Table 2. Cubic models for the effects and interactions of temperature (T)(5 - 37 °C),
initial pH (P)(4.5 - 7.5), sodium chloride content (S)(5 - 50 g/l), and sodium nitrite
concentration (N)(0 - 1000 mg/l) on the aerobic and anaerobic growth of
Listeria monocytogenes Scott A, using Ln(M) and Ln(B) transformations (37)

Lo(M)=

Ln(B) =

Ln(M)=

Ln(B)=

Aerobic

37.657 +0.0135T - 13.7331P + 0.4013S + 0.0713N +
0.00372T2 + 1.9759P2 -0.000667S2 - 0.000007051N2 -
0.083TP + 0.000842TS - 0.000214TN - 0.1155PS -
0.0167PN - 0.000125SN + 0.0000292T3 - 0.0935P3
0.00000328S3 + 0.000286TPS +0.0000315TPN +
0.00000014TSN +0.0000175PSN - 0.000384T2P -
0.00000855T2S - 0.00000043T2N + 0.00731TP2 -
0.0000441TS2 + 0.00672P2S + 0.000968P2N +
0.000294PS2 + 0.00000062PN2 - 0.00000016S2N

Degrees of freedom = 308

R2=0967
-47.709 +0.1631T + 18.6861P - 0.3609S + 0.01N -
0.0016172 - 2.7074P2 + 0.0062352 - 0.0000863N2 +
0.0242TPS - 0.000906TS + 0.000594TN + 0.0671PS -
0.00715PN + 0.000337SN - 0.0000648T3 + 0.1276P3 -
0.00002953 - 0.000551TPS - 0.0000733TPN -
0.00000033TSN - 0.0000431PSN + 0.000189T2P +
0.0000549T2S - 0.00000047T2N - 0.00222TP2 +
0.0000459TS2 - 0.00000002TN2 - 0.0007781P2S +
0.000777P2N - 0.000872PS2 + 0.0000112PN2 -
0.00000038S2N

Degrees of freedom = 308

R2=0942

Anaerobic

89.9195 - 0.5378T - 38.8065P + 1.735S + 0.2175N +
0.00284T2 + 5.9583P2 + 0.00962S2 - 0.000186N2 +
0.1063TP - 0.00159TS + 0.000397TN - 0.567PS -
0.0574PN + 0.0000813SN - 0.0000321T3 - 0.3024P3 -
0.0001078S3 - 0.0000148TPS - 0.0000468TPN -
0.00000118TSN - 0.0000143PSN +0.000397T2P -
0.0000126T2S - 0.00000184T2N - 0.00964TP2 +
0.0000487TS2 + 0.0000001TN2 + 0.0436P2S +
0.0038P2N - 0.000461PS2 + 0.0000247PN2 +
0.00000123S2N - 0.00000001SN2

Degrees of freedom =211

R2=0974
78.2567 +0.7928T + 34.3598P - 0.913S - 0.4437N +
0.00218T2 - 5.3119P2 - 0.00394S2 + 0.000233N2 -
0.2134TP - 0.00174TS -0.00094TN + 0.3002PS +
0.1272PN - 0.00015SN + 0.0000274T3 + 0.2693P3 +
0.0000493S3 + 0.000442TPS + 0.0000985TPN -
0.00000047TSN + 0.0000304PSN - 0.00104T2P +
0.00000175T2S + 0.00000584T2N + 0.0194TP2 -
0.0000318TS2 - 0.0000001 1 TN2 + 0.0238P2S -
0.00911P2N + 0.000215PS2 - 0.0000298PN2 -
0.00000068S2N - 0.00000003SN2

Degrees of freedom = 211

R2=0944




Table3. Comparison of representative predicted versus observed times
toachievea 1000-fold increase in the numbers of salmonellaein tryptone
soya broth

Time (hr)
Temp (°C) % NaCl InitialpH  Observed Predicted
10 0.82 6.22 176 180
4.56 6.02 394 372
15 1.33 6.13 41 45
3.75 5.95 85 70
20 0.77 6.50 14 17
4.50 5.90 36 38
25 1.32 6.20 11 9
4.06 6.02 16 17
30 1.32 .6.20 10 7
45 5.99 14 17

Source: Based on the response surface models of Gibson et al. (36).
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computer-based models and expert systems applicable for a range of food products.
These techniques should be a boon to food microbiologists, allowing them to quickly
explore the microbiological impact of varying conditions within a food, This new area
of research will undoubtedly provide a powerful set of new tools that will allow us to
getone step closer to the long term goal of being able to design microbiological quality
and safety into a product, instead of attempting to infer these attributes after the fact
using end product testing.
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